Классическая алгебра
Аналитическое решение алгебраического уравнения n–ой степени (в радикалах). Примеры решения проблем собственных значений для нахождения функций от матриц и устойчивости линейных дифференциальных и разностных уравнений. Свойства доминирующего корня.
Подобные документы
Математическое понятие корня n-ой степени. Расчет арифметического корня из числа. История возникновения квадратного корня и термина "радикал". Решение уравнений, используя график функции. Упрощение выражений с применением способа замены переменной.
конспект урока, добавлен 28.10.2015Решение некоторых типов линейных интегро-дифференциальных уравнений с аналитическими функциями с помощью метода степенных рядов. Условия для алгоритмизации задач. Линейные интегро-дифференциальные уравнения с пропорциональным запаздыванием аргумента.
статья, добавлен 29.04.2019История и важные этапы развития теории дифференциальных уравнений. Дифференциальное исчисление, созданное Лейбницем и Ньютоном. Доказательство неразрешимости алгебраических уравнений в радикалах. Простейшие дифференциальные уравнения первого порядка.
доклад, добавлен 19.02.2016Изучение эволюции уравнений и их решений. Теории вычислений Древнего Египта, способы решения квадратных уравнений в Древнем Вавилоне и арабских странах. Кубические уравнения Греции, формула Тартальи–Кардано. Методы решения уравнений высоких степеней.
курсовая работа, добавлен 22.05.2010Основные определения матричного исчисления, свойства собственных значений. Преобразование подобия матриц. Матрица вращения, особенности метода Гивенса. Характеристический многочлен матрицы. Метод бисекций решения полной проблемы собственных значений.
курсовая работа, добавлен 22.01.2016Методы решения систем линейных уравнений: Гаусса (последовательного исключения), Крамера, матричный метод. Классификация систем линейных уравнений по числу уравнений, неизвестных. Свойства определителей. Система ступенчатого вида с единственным решением.
контрольная работа, добавлен 23.04.2011Понятие и структура дифференциальных уравнений, их параметры и аргументы. Главные методы решения трех основных уравнений математической физики. Классификация линейных уравнений 1-го и 2-го порядка. Суть метода Фурье. Вывод уравнения теплопроводности.
лекция, добавлен 18.10.2013Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
курсовая работа, добавлен 08.06.2013Определение абсолютной и относительной погрешности численного результата. Решение уравнений с одной неизвестной. Понятие кратного корня. Методы уточнения корней простой итерации. Решение систем линейных уравнений. Особенности интерполяции функций.
курс лекций, добавлен 08.02.2015Сущность численных методов решения нелинейных и дифференциальных уравнений и интерполяции функций. Алгоритм решения типовых задач с помощью программного обеспечения. Анализ их достоинств и недостатков, сравнение эффективности работы каждой программы.
курсовая работа, добавлен 10.02.2019Теорема о существовании единственности решения дифференциальных уравнений различных порядка с разделяющимися переменными. Решение систем с постоянными коэффициентами. Линейно независимые и зависимые системы функций. Определитель Вронского и его свойства.
курс лекций, добавлен 30.07.2017Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Определение точки равновесия (нулевого решения) однородной системы линейных уравнений. Расчет поведения фазовых кривых линейной автономной системы на плоскости.
контрольная работа, добавлен 29.11.2015- 63. Линейная алгебра
Понятия линейной алгебры и матричного множества. Определители квадратных матриц второго, третьего и высших порядков. Правило Крамера для решения систем линейных уравнений первой степени. Ортогональные функции как базис функционального пространства.
реферат, добавлен 30.05.2022 Решение системы трех линейных уравнений методами Крамера и Гаусса с помощью определителей и преобразования матриц. Вычисление длины ребра, угла между ребрами, площади грани, уравнения плоскости и объёма пирамиды по заданным координатам её вершин.
контрольная работа, добавлен 22.08.2014Дифференциальное и интегральное исчисления. Основные типы матриц. Миноры и алгебраические дополнения. Союзная и обратная матрицы. Правило Крамера для решения линейных уравнений. Билинейная и квадратичная форма. Собственные числа и линейное пространство.
реферат, добавлен 02.06.2021Определение уравнений Риккати и характеристика ряда его свойств. Анализ некоторых особенностей решения данного вида дифференциальных уравнений. Интегрируемость уравнений Риккати в конечном виде. Примеры уравнений Риккати, имеющих конечное решение.
курсовая работа, добавлен 19.01.2016Сущность метода половинного деления. Метод итерации как один численных методов решения математических задач, используемый для приближённого решения алгебраических уравнений и систем. Метод Ньютона как итерационный численный метод нахождения корня (нуля).
реферат, добавлен 01.11.2019Применение метода простой итерации для решения систем линейных алгебраических уравнений. Оценка погрешности приближенного вычисления. Поиск пределов матрицы. Построение графиков непрерывных функций. Вычисление квадратного корня из положительного числа.
задача, добавлен 28.10.2017Диофант и история диофантовых уравнений. Сравнения первой степени с одним неизвестным и методы их решения. Методы решения линейных сравнений. Нахождение решений для некоторых частных случаев линейного диофантового уравнения, основные понятия и свойства.
дипломная работа, добавлен 27.10.2013Общая характеристика краевых задач Штурма-Лиувилля. Знакомство с особенностями и назначением теоремы Стеклова. Анализ свойств собственных значений и собственных функций задачи Штурма-Лиувилля. Рассмотрение обыкновенных дифференциальных уравнений.
контрольная работа, добавлен 02.12.2013Алгоритмы решения неоднородных линейных дифференциальных уравнений в коммутативных гиперкомплексных числовых системах для различных типов правых частей уравнений. Особенности, возникающие при решении уравнений в связи с существованием делителей нуля.
статья, добавлен 29.01.2019Построение областей асимптотической устойчивости и неустойчивости уравнения в плоскости параметров уравнения. Наименьший по модулю нуль функции. Уравнение с двумя запаздываниями и постоянными коэффициентами. Область однолистности для отображения.
статья, добавлен 26.04.2019Описание способов решения уравнений второй, третьей и четвертой степени. Использование формулы Кардана, выражающего корни уравнения через его коэффициенты при помощи квадратных радикалов. Примеры решения уравнений второй, третьей и четвертой степени.
курсовая работа, добавлен 08.02.2021Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Построение фазового портрета поведения кривых однородной системы линейных дифференциальных уравнений первого порядка с постоянными коэффициентами на плоскости.
реферат, добавлен 29.11.2015Построение приближений решения линейных дифференциальных уравнений с переменными коэффициентами. Приведение их к интегро-дифференциальным уравнениям Вольтерра при помощи интегральных преобразований Лапласа и основных теорем операционного исчисления.
статья, добавлен 26.07.2016