Некоторые специальные методы оценивания параметров линейных моделей

Основные задачи регрессионного анализа. Использование обобщенного метода наименьших квадратов. Характеристика оценки коэффициентов автокорреляции, дисперсии и ковариации. Особенность тенденции роста рассеяния случайных отклонений и построения матрицы.

Подобные документы

  • Построение математической модели системы на основе экспериментально полученных в процессе её функционирования входных и выходных сигналов. Оценки по критериям наименьших квадратов, наименьших взвешенных квадратов, максимального правдоподобия и риска.

    лабораторная работа, добавлен 16.12.2013

  • Идентификация парной линейной регрессионной зависимости между ВВП и капиталом. Идентификация линейных трендовых моделей ВВП, капитала и числа занятых, прогноз по этим моделям. Эконометрическая модель с использованием метода наименьших квадратов.

    контрольная работа, добавлен 01.11.2012

  • Определение параметров парной линейной регрессии графическим методом. Ее широкое применение в эконометрике ввиду четкой экономической интерпретации ее параметров. Расчет параметров регрессии методом наименьших квадратов. Определение степенной функции.

    контрольная работа, добавлен 02.02.2014

  • Характеристика особенностей линейного парного регрессионного анализа. Методические указания по решению задач по расчету коэффициента линейной парной корреляции и построения уравнения линейной парной регрессии. Анализ множественного регрессионного анализа.

    методичка, добавлен 16.08.2014

  • Оценка надежности и качества коэффициентов уравнения регрессии. Использование методов регрессионного анализа при исследовании ЗАО "Агрофирма "Маяк". Обоснование точной зависимости роста зерновых культур от количества осадков в вегетационный период.

    курсовая работа, добавлен 15.02.2014

  • Основные положения регрессионного анализа. Классическая нормальная линейная модель множественной регрессии. Сущность метода наименьших квадратов. Теорема Гаусса-Маркова. Коэффициенты детерминации. Понятия мультиколлинеарности и частной корреляции.

    курсовая работа, добавлен 29.04.2014

  • Методы отбора экзогенных переменных и оценки качества полученного уравнения. Использование надстройки "Анализ данных" пакета MS Excel при построении моделей множественной регрессии. Предпосылки метода наименьших квадратов (условия Гаусса-Маркова).

    лабораторная работа, добавлен 19.02.2016

  • Классификация и информационная база эконометрических моделей. Сущность однофакторной линейной регрессии. Подбор параметров прямой регрессии по методу наименьших квадратов. Нулевая и конкурирующая гипотезы. Проверка линейной регрессии на адекватность.

    учебное пособие, добавлен 14.04.2015

  • Особенность определения объема выборки относительной частоты. Расчет абсолютных показателей вариации. Вычисление среднеквадратического отклонения. Сущность корреляционного и регрессионного анализа. Основная характеристика интервала варьирования фактора.

    практическая работа, добавлен 10.06.2016

  • Прогнозирование стоимости нефти как важная задача для проведения государственной политики. Использование нелинейного метода наименьших квадратов для оценки параметров модели. Применение накопившейся статистической информации для уточнения прогноза.

    статья, добавлен 13.09.2018

  • Оценка связи порядковых переменных с помощью непараметрических ранговых коэффициентов Спирмена и Кендалла. Модели метода наименьших квадратов с детерминированной независимой переменной. Оценка дисперсии независимой переменной. Сложение временных рядов.

    статья, добавлен 28.07.2020

  • Особенности статистических методов планирования эксперимента с получением линейных моделей. Свойства полного факторного эксперимента типа 2k. Порядок заполнения и приемы построения матрицы планирования эксперимента. Расчет коэффициентов регрессии.

    реферат, добавлен 08.03.2017

  • Расчет прогнозного значения среднегодовой численности промышленно-производственного персонала с помощью моделей кривых роста. Определение коэффициентов линейной и параболической моделей. Рассмотрение и проверка гипотезы об отсутствии автокорреляции.

    курсовая работа, добавлен 01.08.2017

  • Определение динамики стоимости недвижимости при помощи корреляционно-регрессионного анализа. Ввод исходных данных и построение корреляционной матрицы. Поиск доверительных интервалов для коэффициентов уравнения регрессии. Расчёт коэффициента эластичности.

    контрольная работа, добавлен 26.03.2014

  • Суть метода наименьших квадратов, его применение для оценки эконометрических уравнений. Вычисление вторых производных и проверка определенности матрицы Гессе. Построение доверительных интервалов в модели однофакторной регрессии с нормальными ошибками.

    статья, добавлен 04.02.2014

  • Особенности корреляционно-регрессионного метода прогнозирования. Классификация статистических исследований по степени комплексности. Предварительная обработка исходной информации в задачах прогнозной экстраполяции. Особенности метода наименьших квадратов.

    реферат, добавлен 25.09.2015

  • Возникновение и применения метода построения деревьев решений. Основные существующие алгоритмы и решаемые ими задачи. Существующие статистические методы, применяемые для решения тех же задач. Категориальная бинарная и небинарная целевая переменная.

    дипломная работа, добавлен 01.12.2019

  • Временной ряд как совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Основные свойства коэффициента автокорреляции. Сущность метода наименьших квадратов. Расчет линейного уравнения регрессии.

    курсовая работа, добавлен 10.01.2015

  • Поведение и значение различных экономических показателей. Зависимость спроса или потребления от уровня дохода и цен на товары. Парная линейная регрессия. Взаимосвязи экономических переменных. Суть регрессионного анализа. Метод наименьших квадратов.

    лекция, добавлен 15.03.2011

  • Определение полиномиальной аппроксимации для линейной, гиперболической и параболической регрессий. Применение функции невязки для решения задачи регрессионного анализа методом наименьших квадратов. Компьютерная реализация полиномиальной аппроксимации.

    лабораторная работа, добавлен 02.10.2012

  • Основные методы и алгоритмы моделирования случайных величин. Основные вероятностные понятия. Метод средних квадратов фон Неймана. Параметры случайной величины. Получение равномерно распределенных случайных чисел. Моделирование случайных событий.

    лабораторная работа, добавлен 14.06.2015

  • Вычисление матрицы коэффициентов парной корреляции. Методы проведения регрессионного анализа. Определение величин для уравнений с известными факторами значения. Компьютерное моделирование кластерной принадлежности с помощью программ анализа данных.

    реферат, добавлен 05.06.2014

  • Создание информационно-аналитических систем (ИАС). Простые формы корреляционно-регрессионного анализа. Процедуры обработки множественных характеристик. Определение перспектив использования регрессионного анализа в сочетании с другими методами статистики.

    статья, добавлен 22.08.2020

  • Идентификация как единственность соответствия между приведенной, структурной формами эконометрической модели. Получение для сверхидентифицируемого уравнения теоретических значений эндогенных переменных - цель двухшагового метода наименьших квадратов.

    курсовая работа, добавлен 31.10.2014

  • Стохастическое моделирование хозяйственной деятельности. Статистическое исследование коммерческой деятельности. Проведение корреляционно-регрессионного анализа. Изучение типов зависимостей. Применение методов оценки, аппроксимации, наименьших квадратов.

    реферат, добавлен 16.01.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.