О разрешимости задачи Коши для систем нелинейных интегро-дифференциальных уравнений в частных производных с параметром
Преобразование задачи Коши в эквивалентное ей интегральное уравнение Вольтерра второго рода. Применение топологического метода – принципа сжатых отображений. Условия существования решений задачи Коши. Дифференциальные свойства решений начальной задачи.
Подобные документы
Понятие функционального уравнения. Изучение простейших функциональных уравнений. Решение функциональных уравнений методом подстановки и методом Коши. Использование значений функции в некоторых точках. Графическое решение функциональных уравнений.
курсовая работа, добавлен 04.11.2012Уравнения Фредгольма 1-го и 2-го рода. Конечные и бесконечные пределы интегрирования. Однородное интегральное уравнение Вольтера. Понятие метрического пространства. Принцип сжатых отображений. Теорема Банаха и решение интегральных уравнений 2-го рода.
курсовая работа, добавлен 22.04.2011Задача Коши и дифференциальные уравнения I порядка. Уравнения с разделяющимися переменными. Интегрирование линейного однородного уравнения. Теорема существования и единственности решения дифференциального уравнения. Частные случаи уравнений II порядка.
контрольная работа, добавлен 31.03.2015Задача Коши для дифференциального уравнения первого порядка. Геометрический смысл - нахождение интегральной кривой, проходящей через заданную точку. Общее и частное решение. Дифференциальные уравнения первого порядка, разрешенные относительно производных.
курсовая работа, добавлен 10.04.2011Решение задачи Коши в случае переменных коэффициентов. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Метод "переноса краевых условий" в произвольную точку интервала интегрирования. Начало счета методом прогонки.
научная работа, добавлен 01.02.2013Анализ приемов нахождения решений дифференциальных уравнений через элементарные или специальные функции. Принцип сжатых отображений. Понятие метрического пространства. Решение задач методами последовательных приближений Пикара, Эйлера, Рунге-Кутта.
дипломная работа, добавлен 21.09.2016История развития теории обыкновенных дифференциальных уравнений, их значение для решения задач механики. Дифференциальные уравнения первого и высшего порядков, их нормальные системы. Задачи, приводящие к понятию систем дифференциальных уравнений.
учебное пособие, добавлен 30.09.2014Характеристическое вычисление кривой. Основной анализ общего интеграла дифференциального уравнения. Главная особенность решения с разделяющимися переменными в математике. Проведение и обоснование задачи Коши. Подбор решения равенств методом Лагранжа.
практическая работа, добавлен 04.12.2014Система двух функционально-дифференциальных уравнений общего вида. Достаточные условия разрешимости периодической краевой задачи для этой системы в случае резонанса. Периодическая краевая задача для системы функционально-дифференциальных уравнений.
статья, добавлен 26.04.2019Формирование современного понимания функциональной зависимости. Достаточные условия экстремума функции. Нахождение экстремума с помощью производной. Определение предела функции в теореме Коши. Эквивалентность различных определений предела функции.
реферат, добавлен 03.10.2012Доказательство единственности положительного радиально-симметричного решения задачи Дирихле в кольцевой области для одного класса нелинейных уравнений второго порядка. Анализ вопросов существования положительного решения, его поведения, априорных оценок.
статья, добавлен 31.05.2013Рассмотрение численных методов решения уравнений переноса и реализация одного из методов решения на языке программирования С/C++ и в пакете MS Excel. Рассмотрение и решение задачи Коши для уравнений переноса. Линейное одномерное уравнение переноса.
курсовая работа, добавлен 03.10.2017Сущность и структура дифференциальных уравнений, требования к ним и значение в математике. Обыкновенные уравнения первого и высшего порядка, их отличительные характеристики и свойства. Дифференциальные уравнения в частных производных: общее описание.
контрольная работа, добавлен 12.04.2014Рассмотрение теории функций комплексной переменной. Формулировка необходимого условия дифференцируемости функции комплексного переменного по условию Коши-Римана. Теорема Коши для многосвязной области. Формула среднего значения. Ряды, их виды.
шпаргалка, добавлен 02.03.2014- 90. Регуляризация обратных задач, где вырождается уравнение Вольтерра первого рода с особым решением
Изучение обратной задачи с интегральной зависимостью. Характеристика условно-корректного разрозненного уравнения Вольтерра первого рода. Особенность выполнения принципа Банаха. Единственность и условная устойчивость решения задания в обобщенном смысле.
статья, добавлен 15.05.2016 Методы Адамса-Бэшфорта и Адамса-Мултона. Форма записи метода Адамса при изменении шага интегрирования. Методы Адамса для уравнений более высокого порядка. Преимущества метода Адамса по сравнению с методом Рунге-Кутта, изменение шага в процессе решения.
методичка, добавлен 07.12.2013Исследование на сходимость числового ряда. Разложение в окрестности определенной точки в степенной ряд функции. Решение задачи Коши для уравнения. Определение радиуса и интервала сходимости степенного ряда и общего решения дифференциального уравнения.
контрольная работа, добавлен 12.01.2013Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010Описание сути интегральных уравнений третьего рода, а также характеристика направлений их исследований. Формулировка краевой задачи Гильберта. Решение интегрального уравнение третьего рода по теореме Нетера, доказательство его нормальной разрешимости.
статья, добавлен 18.05.2016Решение краевых задач уравнений математической физики и задачи о разыскивании собственных значений и собственных функций для обыкновенных дифференциальных уравнений. Задача Штурма-Лиувилля о нахождении отличных от нуля решений дифференциальных уравнений.
курсовая работа, добавлен 26.02.2020Получение новых достаточных условий разрешимости краевых задач для различных классов квазилинейных функционально-дифференциальных уравнений с необратимой линейной частью. Проблема разрешимости операторного уравнения, характеристика используемых теорем.
автореферат, добавлен 26.01.2018Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
курсовая работа, добавлен 08.06.2013Исследование многоточечной краевой задачи, в которой функция удовлетворяет условиям Каратеодори. Вид трехточечной задачи для дифференциального уравнения второго порядка. Рассмотрение вспомогательного утверждения о разрешимости операторных уравнений.
статья, добавлен 26.04.2019Разработка способа редукции задач с нормальными производными в граничных условиях к задачам Гурса. Построение картины их разрешимости. Для уравнения Лиувилля построены в явном виде решения задач с граничными условиями первого, второго и третьего рода.
автореферат, добавлен 17.12.2017Свойства систем дифференциальных уравнений. Исследование предельного множества траекторий. Траектории линейных систем на плоскости. Линейные однородные системы с периодическими коэффициентам. Устойчивость решений систем дифференциальных уравнений.
курсовая работа, добавлен 26.11.2014