Формула полной вероятности

Предположение группы событий, объединение которых образует пространство элементарных исходов. Использование диаграммы Венна для теоремы сложения вероятностей и умножения. Применение формулы Байеса для условного исчисления априорной реализации гипотезы.

Подобные документы

  • Способы распределения медалей между игроками. Случайное событие и его дополнение. Описание пространства элементарных событий. Формула нахождения вероятности появления хотя бы одного события. Нахождение функции распределения дискретной случайной величины.

    методичка, добавлен 20.12.2011

  • Вероятность событий согласно теореме о произведении вероятностей для независимых событий. График функции распределения. Математическое ожидание, дисперсия и среднее квадратичное отклонение случайной величины. Сложение вероятностей несовместных событий.

    контрольная работа, добавлен 05.11.2016

  • Основная теория алгебры. Корни многочлена и его производной. Свойства неприводимых многочленов. Алгоритмы разложения на неприводимые множители. Формула обращения Мёбиуса. Теоремы дополнения, сложения аргументов и умножения. Арифметические свойства чисел.

    книга, добавлен 28.12.2013

  • Математическое ожидание, дисперсия, коэффициенты корреляции - основные характеристики совместного распределения нескольких случайных величин. Специфические особенности применения теоремы умножения вероятностей для рассмотрения составных испытаний.

    реферат, добавлен 05.12.2021

  • Формулы сокращенного умножения и разложения на множители, степени и корни, квадратное уравнение, прогрессии (арифметическая, геометрическая) математики. Тригонометрия (формулы сложения двойного и половинного аргумента), геометрия и стереометрия.

    шпаргалка, добавлен 01.05.2009

  • Анализ основных понятий теории вероятностей. Прикладное применение знания теории вероятностей, обзор ее основные видов. Понятие случайного события, логика мышления по закону вероятности. Определение вероятности какого-либо события из повседневной жизни.

    доклад, добавлен 13.03.2022

  • Свойства линейных операций над векторами. Векторное пространство как действительное множество направлений с действительными компонентами, в котором определены операции сложения векторов и умножения его на число, удовлетворяющие приведенным свойствам.

    презентация, добавлен 21.09.2013

  • История зарождения и развития комбинаторики, ее применение в теории вероятностей, криптографии, терминологии и математике. Биномиальные коэффициенты ("треугольник Паскаля"). Примеры комбинаторных конфигураций и задач. Правила сложения и умножения.

    реферат, добавлен 12.11.2016

  • Преобразование целых выражений. Понятие многочлена как суммы одночленов. Правило умножения многочлена на многочлен. Формулы квадрата суммы и разности, разности квадратов, куба суммы и разности. Представление в виде многочлена, разложение его на множители.

    презентация, добавлен 19.12.2013

  • Формулировка комбинаторных правил суммы и произведения. Комбинаторные схемы выбора. Формулы для числа размещений и сочетаний в схемах выбора. Определения суммы, произведения, разности событий, противоположного события. События на диаграммах Эйлера-Венна.

    контрольная работа, добавлен 26.05.2012

  • Понятие события в теории вероятностей. Достоверные, невозможные и случайные события. Определение вероятности события. Примеры нахождения вероятности различных событий. Понятие противоположного события. Теорема о вероятности противоположного события.

    лекция, добавлен 26.07.2015

  • Определение вероятности события по классической формуле. Расчет вероятности гипотез по формуле Байеса. Составление закона распределения. Нахождение математического ожидания, дисперсии и среднеквадратического отклонения. Вычисление асимметрии и эксцесса.

    задача, добавлен 28.02.2015

  • Формула полной вероятности. Математическое ожидание, среднеквадратическое отклонение и дисперсия. Дискретная случайная величина. Интегральная функция распределения F(x). Квантили Х для нормального стандартного распределения по указанным вероятностям.

    контрольная работа, добавлен 10.12.2013

  • Предположение о простоте решения теоремы Ферма геометрическим способом. Особенности интерпретации известной формулы с точки зрения многомерности пространства. Физическое понимание множества измерений и способы применения их для расчетов в математике.

    доклад, добавлен 23.08.2013

  • Нахождение вероятности случайного события. Формула Пуассона. Функция и график распределения случайной величины. Классическая формула вероятности и формула числа сочетаний. Расчет дисперсии и математического ожидания по плотности вероятности величины.

    контрольная работа, добавлен 14.05.2012

  • Понятие, история и свойства вероятности как степени возможности наступления происшествия. Зависимые и независимые события. Теорема умножения вероятности. Относительная частота события. Математическое ожидание и формула Бернулли. Закон больших чисел.

    реферат, добавлен 12.12.2013

  • Определение зависимых и независимых событий в теории вероятности. Вероятность наступления события при условной вероятности. Рассмотрение явления вероятности суммы событий. Изучение формул вычисления вероятности произведения тех или иных событий.

    презентация, добавлен 26.07.2015

  • Формулы и теоремы комбинаторики. Предмет теории вероятностей и статистическая устойчивость. Виды операций над событиями. Независимые испытания с несколькими исходами. Случайные величины и их распределение. Изучение числовых характеристик зависимости.

    учебное пособие, добавлен 25.12.2013

  • Порядок нахождения согласно теоремы умножения независимых событий вероятности того, что из трех банков, в которые предприниматель положил личный депозит для накопления средств на развитие бизнеса, ему вернут вклад: двое из них или хотя бы один банк.

    задача, добавлен 05.02.2011

  • Расчет задач по теории вероятности с разными условиями наступления тех или иных событий по формуле Бернулли. Исчисление вероятности наступления конкретного события. Исчисление вероятности конкретной последовательности наступления определенных событий.

    контрольная работа, добавлен 23.01.2014

  • Основные этапы развития теории вероятностей. Классификация наблюдаемых событий и явлений: достоверные, невозможные и случайные. Определение понятий событие, его вероятность и частота, случайная величина. Применение теории вероятностей в современном мире.

    реферат, добавлен 27.02.2012

  • Логарифмическая производная функции. Производная степенно показательной функции. Производные и дифференциалы высших порядков. Формула Тейлора с остаточным членом в форме Пеано. Теоремы о дифференцируемых функциях. Формулы разложения элементарных функций.

    контрольная работа, добавлен 26.05.2014

  • Классическое определение вероятности, вычисление относительной частоты, её свойства. Дискретные и непрерывные случайные величины, биноминальное распределение, задачи и функции дисперсии. Формулы Байеса и Бернулли, интегральная теорема Муавра-Лапласа.

    курс лекций, добавлен 29.09.2014

  • Формула Ньютона-Лейбница как один из ключевых элементов математического анализа и основа для интегрального исчисления. Характеристика теоремы о среднем значении для определенного интеграла. Определение производной как предела разностного отношения.

    доклад, добавлен 02.11.2014

  • Основное положение теории вероятности – науки, занимающейся изучением закономерностей массовых случайных явлений. Возможные результаты единичной операции, или испытания. Основные категории теории вероятности. Описание пространства элементарных событий.

    реферат, добавлен 16.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.