Формула полной вероятности
Предположение группы событий, объединение которых образует пространство элементарных исходов. Использование диаграммы Венна для теоремы сложения вероятностей и умножения. Применение формулы Байеса для условного исчисления априорной реализации гипотезы.
Подобные документы
- 101. Теория вероятности
Способы распределения медалей между игроками. Случайное событие и его дополнение. Описание пространства элементарных событий. Формула нахождения вероятности появления хотя бы одного события. Нахождение функции распределения дискретной случайной величины.
методичка, добавлен 20.12.2011 Вероятность событий согласно теореме о произведении вероятностей для независимых событий. График функции распределения. Математическое ожидание, дисперсия и среднее квадратичное отклонение случайной величины. Сложение вероятностей несовместных событий.
контрольная работа, добавлен 05.11.2016- 103. Теория многочленов
Основная теория алгебры. Корни многочлена и его производной. Свойства неприводимых многочленов. Алгоритмы разложения на неприводимые множители. Формула обращения Мёбиуса. Теоремы дополнения, сложения аргументов и умножения. Арифметические свойства чисел.
книга, добавлен 28.12.2013 Математическое ожидание, дисперсия, коэффициенты корреляции - основные характеристики совместного распределения нескольких случайных величин. Специфические особенности применения теоремы умножения вероятностей для рассмотрения составных испытаний.
реферат, добавлен 05.12.2021Формулы сокращенного умножения и разложения на множители, степени и корни, квадратное уравнение, прогрессии (арифметическая, геометрическая) математики. Тригонометрия (формулы сложения двойного и половинного аргумента), геометрия и стереометрия.
шпаргалка, добавлен 01.05.2009Анализ основных понятий теории вероятностей. Прикладное применение знания теории вероятностей, обзор ее основные видов. Понятие случайного события, логика мышления по закону вероятности. Определение вероятности какого-либо события из повседневной жизни.
доклад, добавлен 13.03.2022Свойства линейных операций над векторами. Векторное пространство как действительное множество направлений с действительными компонентами, в котором определены операции сложения векторов и умножения его на число, удовлетворяющие приведенным свойствам.
презентация, добавлен 21.09.2013- 108. Основы комбинаторики
История зарождения и развития комбинаторики, ее применение в теории вероятностей, криптографии, терминологии и математике. Биномиальные коэффициенты ("треугольник Паскаля"). Примеры комбинаторных конфигураций и задач. Правила сложения и умножения.
реферат, добавлен 12.11.2016 Преобразование целых выражений. Понятие многочлена как суммы одночленов. Правило умножения многочлена на многочлен. Формулы квадрата суммы и разности, разности квадратов, куба суммы и разности. Представление в виде многочлена, разложение его на множители.
презентация, добавлен 19.12.2013Формулировка комбинаторных правил суммы и произведения. Комбинаторные схемы выбора. Формулы для числа размещений и сочетаний в схемах выбора. Определения суммы, произведения, разности событий, противоположного события. События на диаграммах Эйлера-Венна.
контрольная работа, добавлен 26.05.2012Понятие события в теории вероятностей. Достоверные, невозможные и случайные события. Определение вероятности события. Примеры нахождения вероятности различных событий. Понятие противоположного события. Теорема о вероятности противоположного события.
лекция, добавлен 26.07.2015- 112. Теория вероятностей
Определение вероятности события по классической формуле. Расчет вероятности гипотез по формуле Байеса. Составление закона распределения. Нахождение математического ожидания, дисперсии и среднеквадратического отклонения. Вычисление асимметрии и эксцесса.
задача, добавлен 28.02.2015 - 113. Теория вероятностей
Формула полной вероятности. Математическое ожидание, среднеквадратическое отклонение и дисперсия. Дискретная случайная величина. Интегральная функция распределения F(x). Квантили Х для нормального стандартного распределения по указанным вероятностям.
контрольная работа, добавлен 10.12.2013 Предположение о простоте решения теоремы Ферма геометрическим способом. Особенности интерпретации известной формулы с точки зрения многомерности пространства. Физическое понимание множества измерений и способы применения их для расчетов в математике.
доклад, добавлен 23.08.2013Нахождение вероятности случайного события. Формула Пуассона. Функция и график распределения случайной величины. Классическая формула вероятности и формула числа сочетаний. Расчет дисперсии и математического ожидания по плотности вероятности величины.
контрольная работа, добавлен 14.05.2012Понятие, история и свойства вероятности как степени возможности наступления происшествия. Зависимые и независимые события. Теорема умножения вероятности. Относительная частота события. Математическое ожидание и формула Бернулли. Закон больших чисел.
реферат, добавлен 12.12.2013Определение зависимых и независимых событий в теории вероятности. Вероятность наступления события при условной вероятности. Рассмотрение явления вероятности суммы событий. Изучение формул вычисления вероятности произведения тех или иных событий.
презентация, добавлен 26.07.2015- 118. Теория вероятностей
Формулы и теоремы комбинаторики. Предмет теории вероятностей и статистическая устойчивость. Виды операций над событиями. Независимые испытания с несколькими исходами. Случайные величины и их распределение. Изучение числовых характеристик зависимости.
учебное пособие, добавлен 25.12.2013 Порядок нахождения согласно теоремы умножения независимых событий вероятности того, что из трех банков, в которые предприниматель положил личный депозит для накопления средств на развитие бизнеса, ему вернут вклад: двое из них или хотя бы один банк.
задача, добавлен 05.02.2011Расчет задач по теории вероятности с разными условиями наступления тех или иных событий по формуле Бернулли. Исчисление вероятности наступления конкретного события. Исчисление вероятности конкретной последовательности наступления определенных событий.
контрольная работа, добавлен 23.01.2014Основные этапы развития теории вероятностей. Классификация наблюдаемых событий и явлений: достоверные, невозможные и случайные. Определение понятий событие, его вероятность и частота, случайная величина. Применение теории вероятностей в современном мире.
реферат, добавлен 27.02.2012Логарифмическая производная функции. Производная степенно показательной функции. Производные и дифференциалы высших порядков. Формула Тейлора с остаточным членом в форме Пеано. Теоремы о дифференцируемых функциях. Формулы разложения элементарных функций.
контрольная работа, добавлен 26.05.2014- 123. Теория вероятности
Классическое определение вероятности, вычисление относительной частоты, её свойства. Дискретные и непрерывные случайные величины, биноминальное распределение, задачи и функции дисперсии. Формулы Байеса и Бернулли, интегральная теорема Муавра-Лапласа.
курс лекций, добавлен 29.09.2014 Формула Ньютона-Лейбница как один из ключевых элементов математического анализа и основа для интегрального исчисления. Характеристика теоремы о среднем значении для определенного интеграла. Определение производной как предела разностного отношения.
доклад, добавлен 02.11.2014- 125. Теория вероятности
Основное положение теории вероятности – науки, занимающейся изучением закономерностей массовых случайных явлений. Возможные результаты единичной операции, или испытания. Основные категории теории вероятности. Описание пространства элементарных событий.
реферат, добавлен 16.06.2015