Тройной интеграл

Сферические координаты точки в пространстве. Криволинейный интеграл по длине дуги. Формулы связи между декартовыми и сферическими данными. Оценка функций пространственной кривой. Изучение метода параметризации дуги. Криволинейный интеграл по координатам.

Подобные документы

  • Понятие криволинейного интеграла, его функции и свойства. Три интегральных суммы криволинейного интеграла первого и второго рода, их взаимосвязь. Вычисление перемещения материальной точки вдоль кривой. Теорема существования криволинейного интеграла.

    реферат, добавлен 20.10.2014

  • Изучение формулы Ньютона-Лейбница и способа вычисления определенного интеграла с ее помощью. Вычисление площадей плоских фигур и длины дуги кривой. Приближенное вычисление определенного интеграла. Вычисление двойного интеграла в полярных координатах.

    курсовая работа, добавлен 13.11.2011

  • Понятие первообразной от функции. Свойства неопределённых интегралов. Интегрирование по частям. Понятие рациональной дроби. Интегрирование некоторых классов тригонометрических функций. Задачи о нахождении площади плоской фигуры. Несобственный интеграл.

    лекция, добавлен 12.04.2012

  • Понятие и свойства тройного интеграла, его использование в решении прикладных задач. Вычисление тройного интеграла в декартовых, сферических, цилиндрических координатах. Нахождение площадей, ограниченных кривыми, и объемов, ограниченных поверхностями.

    курсовая работа, добавлен 21.05.2012

  • Понятие интеграла, основная идея его построения. Сущность и структура простых функций. Интеграл Лебега от простых функций. Определение интеграла Лебега. Основные свойства и предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега.

    курсовая работа, добавлен 20.10.2010

  • Сущность понятия "несобственные интегралы". Формула Ньютона-Лейбница. Нарушение первого и второго условия. Сходящийся и расходящийся интеграл. Несобственный интеграл с бесконечными пределами. Интегралы от неограниченных функций, признак сравнения.

    лекция, добавлен 29.09.2017

  • Свойства неопределенного интеграла. Применение метода подстановки для различных типов функций. Разложение интегральной функции. Формула понижения степени для интеграла. Интегрирование иррациональных функций. Подстановки Эйлера. Дифференциальные биномы.

    контрольная работа, добавлен 22.12.2015

  • Понятие первообразной и особенности теоремы о ней. Неопределенный интеграл и его свойства. Замена переменной и интегрирование по частям в неопределенном интеграле. Интегрирование дробей и иррациональных выражений. Вычисление площадей плоских фигур.

    реферат, добавлен 20.10.2010

  • Описаны примеры решений задач: Расставить пределы интегрирования двумя способами в двойном интеграле. Вычислить двойной, тройной интеграл. Найти площадь области, ограниченной кривыми и объем тела, ограниченного поверхностями. Вычисления по формуле Грина.

    контрольная работа, добавлен 24.04.2014

  • Первообразная функция и неопределенный интеграл. Восстановление функции по ее производной. Определение пройденного пути по заданной скорости движения. Интеграл и задача об определении площади. Свойства неопределенного интеграла. Примеры интегрирования.

    курсовая работа, добавлен 22.04.2011

  • Понятие первообразной, правила нахождения. Определенный интеграл и его свойства. Площадь криволинейной трапеции. Основное свойство первоообразных. Постоянный множитель, стоящий перед функцией. Интеграл как основное понятие математического анализа.

    презентация, добавлен 16.09.2016

  • Понятие определенного интеграла. Описание классов интегрируемых функций. Анализ свойств определенного интеграла и методов его вычисления. Примеры вычисления интеграла при помощи формулы Ньютона–Лейбница, замены переменной, интегрирования по частям.

    конспект урока, добавлен 18.04.2016

  • Определение двойных, тройных и криволинейных интегралов, их свойства и вычисление, замена переменных, сферические координаты. Условия независимости криволинейного интеграла от пути интегрирования. Восстановление функции по её полному дифференциалу.

    контрольная работа, добавлен 09.04.2016

  • Формулы интегрирования по частям в определенном интеграле. Рассмотрение правил замены переменной. Нахождение площадей сегментов, криволинейных секторов и трапеций. Измерение плоской фигуры как произвольное ограниченное множество точек на поверхности.

    лекция, добавлен 17.01.2014

  • Интеграл Эйлера первого рода (бета-функция). Определение Эйлерова интеграла второго рода. Характеристика свойств непрерывности гамма-функции, основного функционального уравнения и формулы дополнения. Установление связи между бета- и гамма-функциями.

    курсовая работа, добавлен 18.12.2012

  • Определение первообразной функции. Методы нахождения неопределенных интегралов: приведение к табличному виду и метод замены переменной, интегрирование по частям. Определённый интеграл, его применение для вычисления площадей фигур и работы переменной силы.

    контрольная работа, добавлен 05.04.2021

  • Понятие тройного интеграла, его свойства, правила вычисления. Цилиндрические и сферические координаты в интегрировании. Определение координат центра тяжести тела, моментов инерции тела относительно координатных осей и кинетической энергии части тела.

    реферат, добавлен 21.01.2011

  • Свойства интеграла от функции комплексной переменной. Вывод формулы Коши. Разложение функции в ряды. Классификация изолированных особых точек, теорема о вычетах. Операционное исчисление и его приложения. Связь между преобразованиями Фурье и Лапласа.

    лекция, добавлен 18.05.2010

  • Математическое обоснование алгоритма вычисления интеграла Лебега и его основные свойства от ограниченной измеримой функции Предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега. Интеграл Лебега по множеству бесконечной меры.

    реферат, добавлен 12.03.2010

  • По плану исследовать функцию и построить её график: область определения, точки разрыва, корни уравнения, точки перегиба. Решить систему методом Гаусса: расширенная матрица. Вычислите площадь фигуры, ограниченной графиками функций. Вычислите интеграл.

    задача, добавлен 03.05.2009

  • Интеграл Эйлера-Пуассона, не выражающийся через элементарные функции. Схема, позволяющая вычислить несобственный интеграл. Сущность геометрической добавки к нулевому приближению. "Неберущаяся" часть исходного интеграла, связанная с заданной функцией.

    статья, добавлен 29.05.2017

  • Геометрические характеристики векторного поля. Дифференциальные операции 1 и 2 порядка, оператор Гамильтона. Виды векторных полей. Интеграл от векторной функции вдоль кривой. Работа и свойства потенциального поля. Примеры восстановления потенциала.

    презентация, добавлен 19.11.2017

  • Решение прикладных задач в области геометрии, механики и физики с использованием определённого интеграла. Вычисление площади криволинейной трапеции. Определение объёма тела, полученного вращением плоской фигуры вокруг оси. Нахождение длины дуги кривой.

    контрольная работа, добавлен 09.05.2021

  • Элементы дискретной математики. Сущность математической логики. Операции над множествами. Правила, формулы дифференцирования. Неопределенный интеграл, методы интегрирования. Основы теории вероятностей и математической статистики. Понятие и предел функции.

    учебное пособие, добавлен 03.07.2013

  • Задача о вычислении объема при помощи двойного интеграла. Примеры вычислений двойного интеграла в декартовых координатах и в полярной системе. Тройной интеграл в цилиндрической системе координат: нахождение объема тела, ограниченного параболоидами.

    презентация, добавлен 26.09.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.