Матрицы и определители. Системы линейных уравнений. Уравнение плоскости

Алгебраические дополнения для определителей. Обзор алгоритма нахождения исходной матрицы. Изучение метода обратной матрицы при решении системы уравнений. Расчет длины отрезков, отсекаемых плоскостью от осей координат с помощью уравнения плоскости.

Подобные документы

  • Простейшие задачи аналитической геометрии на плоскости и системы координат в геодезии и картографии. Применение матриц, элементов теории графов и систем линейных уравнений в географии. Исследования с помощью производных, дифференциалов и интегралов.

    учебное пособие, добавлен 15.04.2014

  • Решение системы линейных уравнений методом Гаусса, нахождение предела и производной функции. Составление уравнения касательных, схематичное построение графиков. Вычисление расширенной матрицы, определение промежутков знаков постоянства и экстремумов.

    контрольная работа, добавлен 21.10.2014

  • Базовые действия над матрицами: сложение, вычитание, умножение на число, умножение матрицы на матрицу, также операция деления на матрицу. Теорема невырожденной квадратной матрицы. Понятие обратной матрицы и решение уравнения. Базисный минор и ранг.

    реферат, добавлен 07.04.2015

  • Суть строчной, столбцовой, диагональной, единичной и транспонированной матрицы. Особенность определителей и их свойств. Собственные значения и векторы многомерной таблицы. Анализ квадратичной формы переменных. Исследование систем линейных уравнений.

    лекция, добавлен 05.06.2016

  • Применение метода простой итерации для решения систем линейных алгебраических уравнений. Оценка погрешности приближенного вычисления. Поиск пределов матрицы. Построение графиков непрерывных функций. Вычисление квадратного корня из положительного числа.

    задача, добавлен 28.10.2017

  • Матрицы с нулевым определителем. Прямоугольная декартова система координат на плоскости. Скалярное и смешанное произведение векторов, а также условие коллинеарности. Канонические уравнения эллипса, окружности и параболы. Основные теоремы пределов.

    лекция, добавлен 30.11.2010

  • Матричная форма записи алгебраических операций. Совместные и несовместные системы линейных уравнений. Решение задач матричным методом. Исследование однородной системы методом Гаусса. Вычисление определителя матрицы. Особенности линейных преобразований.

    контрольная работа, добавлен 31.01.2014

  • Рассмотрение системы линейных уравнений. Характеристика наиболее мощного и универсального инструмента для нахождения решения любой системы линейных уравнений - метода Гаусса (последовательного исключения неизвестных). Примеры решений для чайников.

    задача, добавлен 24.11.2014

  • Простые и итерационные методы вычисления систем уравнений. Нормы вектора и матрицы. Условия их согласованности. Коэффициентная устойчивость решения по правой части. Алгоритм и определение трудоемкости метода Гаусса. Операции умножения и деления.

    презентация, добавлен 30.10.2013

  • Исследование основных научных гипотез, раскрывающих математическую сущность декартовой системы координат и вычислений. Рассмотрение методов решения уравнений прямой на плоскости. Формульное выражение объекта при наличии заданной точки или отрезков.

    презентация, добавлен 01.09.2015

  • Фундаментальная система решений и общее решение однородной системы уравнения. Система n линейных уравнений с n неизвестными. Правило Крамера. Однородная система n линейных уравнений, с n неизвестными. Метод Гаусса. Матричный вид системы уравнений.

    контрольная работа, добавлен 06.08.2013

  • Анализ понятия матрицы: классификация и основные операции над ними. Определители квадратной матрицы и их свойства. Теоремы Лапласа и аннулирования. Обратная матрица: определение понятий, ее единственность, а также алгоритм ее построения и свойства.

    курсовая работа, добавлен 21.04.2011

  • Понятие и структура матриц, их классификация и типы, подходы к анализу. Типы и свойства операций, производимых над матрицами: сложение, умножение. Понятие определителя матрицы, а также правила его вычисления. Системы линейных алгебраических уравнений.

    лекция, добавлен 12.11.2017

  • Определение матрицы интенсивностей переходов по графу. Непрерывная цепь Маркова и распределение вероятностей. Алгебраические уравнения для финальных вероятностных состояний. Произведение всех интенсивностей, их значение при решении примеров и задач.

    контрольная работа, добавлен 09.02.2012

  • Определение ранга расширенной матрицы системы. Решение системы по формулам Крамера. Средства векторной алгебры. Разложение вектора в базисе по векторам. Уравнение прямой, проходящей через две точки. Определение знаков неравенств. Точки разрыва функции.

    контрольная работа, добавлен 03.02.2017

  • Простейшие тригонометрические уравнения в алгебре. Порядок разложения равенств на множители. Изучение метода подстановки как алгебраического способа решения системы линейных уравнений. Дробно-рациональные и иррациональные тригонометрические уравнения.

    реферат, добавлен 31.03.2014

  • Решение однородных и неоднородных линейных систем. Существование фундаментальной матрицы и ее построение. Анализ методов вариации произвольных постоянных. Решение дифференциальных уравнений первого порядка. Элементы теории устойчивости, уравнение Пфаффа.

    курс лекций, добавлен 11.10.2014

  • Решение уравнений высших степеней. Правила действий над мнимыми и комплексными числами. невозможность алгоритма общих уравнений Формула для нахождения корней. Различные методы решения алгебраических уравнений второй, третьей и четвертой степени.

    статья, добавлен 29.04.2021

  • Изучение понятия и видов матрицы, рассмотрение алгоритма решения систем линейных уравнений в матричной форме. Исследование свойств пределов функций и примеров их нахождения. Характеристика основных задач, инструментов и методов аналитической геометрии.

    реферат, добавлен 02.06.2014

  • Анализ особенностей итерационных методов решателя, относящихся к семейству проекционных методов решения системы линейных уравнений. Изучение обобщенного метода минимальной невязки (GMRES), который может обрабатывать несимметричные разреженные матрицы.

    статья, добавлен 25.08.2020

  • Изучение трансцендентных уравнений, включающих алгебраические, тригонометрические и экспоненциальные функции. Характеристика точных и итерационных методов. Этапы нахождения корня уравнения итерационным способом. Применение метода половинного деления.

    контрольная работа, добавлен 17.05.2019

  • Применение приближенных (численных) способов нахождения корней системы матричных уравнений с большим числом неизвестных. Содержание методов простых итераций, Зейделя, релаксации, используемых в решении уравнений. Теорема сходимости итерационного процесса.

    лекция, добавлен 21.09.2017

  • Понятие и виды матриц, операции с ними. Способы вычисления определителей второго, третьего и высших порядков. Матричный способ задания системы линейных уравнений. Свойство параллельности и перпендикулярности прямых. Уравнения плоскости в пространстве.

    лекция, добавлен 18.03.2015

  • Доказательство формулы для определителя Грама и Леммы Накаямы. Решение системы линейных уравнений с ненулевым определителем основной матрицы. Ее запись в матричном виде. Реализация метода Крамера со сложностью, сравнимой со сложностью метода Гаусса.

    доклад, добавлен 11.12.2017

  • Элементы теории матриц. Системы линейных уравнений. Элементы векторной алгебры. Прямая на плоскости. Определители третьего порядка. Кривые второго порядка. Плоскость и прямая в пространстве. Поверхности второго порядка. Понятие комплексных чисел.

    лекция, добавлен 23.08.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.