Комплексные числа

История возникновения комплексных чисел, их общая характеристика. Действия над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексного числа, его тригонометрическая, показательная форма. Применение комплексных чисел.

Подобные документы

  • Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательству некоторых основных планиметрических теорем (отрезок; параллельность и перпендикулярность; углы и площади; треугольники; прямые и окружности).

    курсовая работа, добавлен 31.10.2010

  • Закон сохранения количества чисел джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Изоморфные свойства рядов четных и нечетных чисел натурального ряда. Определение простоты произвольного целого числа и факторизация.

    учебное пособие, добавлен 15.09.2012

  • Характеристика совершенных чисел как натуральных чисел, равных сумме всех своих собственных делителей (то есть всех положительных делителей, отличных от самих чисел). Изучение основных свойств и операций с совершенными числами, анализ их истории.

    презентация, добавлен 20.10.2016

  • Тригонометрическая форма записи комплексных чисел, предел их последовательности. Понятие функции комплексного переменного, его дифференцируемость. Геометрический смысл определения производной функции. Гиперболические функции вещественного переменного.

    курс лекций, добавлен 15.09.2017

  • Доказательство бесконечности регулярных простых чисел. Делимость числителей чисел Бернулли. Делимость чисел при сравнении по ненулевому рациональному модулю. Частные случаи делимости целых и дробных чисел. Простые числа в арифметических прогрессиях.

    статья, добавлен 03.03.2018

  • Сравнение по ненулевому модулю третьего натурального числа. Характеристика главных особенностей деления числа на множество указанных чисел (дробных или целых). Сложение и умножение чисел. Отношение эквивалентности. Основные классы сравнения чисел.

    статья, добавлен 03.03.2018

  • Загальні відомості про числа Фібоначчі. Означення та основні властивості чисел Фібоначчі. Метод математичної індукції і числа Фібоначчі. Взаємозв'язок чисел Фібоначчі з золотим перетином. Застосування чисел та золотої пропорції в різних галузях.

    курсовая работа, добавлен 12.11.2018

  • Психолого-педагогические, исторические основы построения факультативных занятий в средней школе. Развитие познавательных интересов учащихся. Анализ содержания учебной литературы по теме "комплексные числа". Методические рекомендации по проведению занятий.

    дипломная работа, добавлен 17.11.2021

  • Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.

    контрольная работа, добавлен 30.10.2010

  • Найпростіші застосування комплексних чисел. Спосіб Гамільтона введення комплексних чисел. Застосування комплексних чисел в геометрії. Формули Ейлера і Муавра та їх застосування. Комплексні числа в геометричних побудовах. Комплексні числа і центр мас.

    реферат, добавлен 10.01.2009

  • Комплексные числа как один из подходящих разделов курса математического анализа для реализации профессиональной направленности бакалавров по направлению подготовки Математика и Информатика. Производимые с ними операции. Структура матричной модели.

    контрольная работа, добавлен 12.05.2015

  • Особливість визначення поняття числа та видів числових множин. Досліджень чисел, які входять до множини цілих, раціональних та дійсних чисел. Розгляд різниці записів у вигляді нескінченного десяткового дробу раціонального та ірраціонального чисел.

    разработка урока, добавлен 08.06.2019

  • Изучение графического положения разности между последовательными простыми числами при стремлении простых чисел к бесконечности. Доказательство гипотезы Римана без использования комплексных чисел. Теорема Евдокса–Архимеда, Чебышева. Непустые множества.

    статья, добавлен 03.03.2018

  • Рассмотрение на евклидовой плоскости системы ортонормированных координат. Операции над комплексными числами. Теория стереографической проекции сферы на плоскость. Теорема интегрирования абелевых дифференциалов. Косы как деформирующиеся наборы точек.

    учебное пособие, добавлен 28.12.2013

  • Определение основных понятий числовых множеств. Граничная точка и граница множества, соединения и бином Ньютона, а также треугольник Паскаля. Характеристика комплексных чисел и операции над ними. Формула Муавра и извлечение корня из комплексного числа.

    реферат, добавлен 17.01.2011

  • Піднесення комплексного числа до цілого додатного степеня за допомогою формули бінома Ньютона. Закономірності та головні етапи добування кореня з комплексного числа. Умови рівності двох комплексних чисел, а також вимоги до їхніх модулів і аргументів.

    контрольная работа, добавлен 16.07.2017

  • Минуле і теперішнє комплексних чисел які знайшли чисельні застосування: в картографії, електротехніці, гідродинаміці, теоретичній фізиці. Спосіб Гамільтона введення комплексних чисел. Закони для комплексних чисел. Виконання ділення комплексних чисел.

    реферат, добавлен 10.01.2009

  • Понятие блуждания, нахождение биномиальных коэффициентов. История развития фигурных чисел, характеристика их основных видов. Вычисление многоугольных чисел и проверка свойств фигурных чисел. Исследования Пьера Ферма, специфика пирамидальных чисел.

    курсовая работа, добавлен 14.06.2017

  • Поняття про спряжені комплексні числа та протилежні числа. Розв’язування квадратних рівнянь з від’ємним дискримінантом. Закони множення для дійсних чисел: переставний і сполучний. Приклади додавання, віднімання, множення та ділення комплексних чисел.

    реферат, добавлен 07.10.2010

  • В работе описан метод факторизации чисел Мерсенна, разработанный на основе утверждения о делителях числа Mp: все простые делители числа Mp имеют вид 2p*k+1. Определено значение индекса n. Выполнена формализация определения простого числа Софи Жермен.

    статья, добавлен 26.01.2020

  • Аксиомы сравнения, противоречия, границ, воздействия. Аксиомы структуры информационного обмена. Свойства комплексных чисел и показательной функции. Способы укладки отрезков. Неожиданности комплексных чисел. Алгебраическая запись взаимодействия объектов.

    учебное пособие, добавлен 10.03.2017

  • Формулы сокращенного умножения и логарифмов. Наибольший общий делитель двух или нескольких натуральных чисел. Простые и составные числа. Модуль действительного числа, его свойства. Степень числа с рациональным показателем. Арифметический корень.

    учебное пособие, добавлен 04.02.2012

  • Определение понятия множества чисел и классификация их систем. Характеристика и доказательство аксиом Пеано по методу математической индукции. Исследование теорем о множестве целых чисел. Очерк сущности множества рациональных и комплексных чисел.

    реферат, добавлен 29.10.2013

  • Определение сущности числа, история его происхождения. Основные функции количественных натуральных числовых единиц. Система записи чисел в Древнем Риме и Вавилоне. Рассмотрение особенностей счета у народа майя. Славянские цифровые знаки-буквы с титлами.

    презентация, добавлен 19.01.2015

  • История открытия алгебраических чисел: действительного числа и мнимой единицы. Открытие метафизиком Смирновым В.В. еще двух алгебраических чисел: доказательства, расчеты, научное обоснование. Полезность данного открытия на примерах решения уравнений.

    научная работа, добавлен 30.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.