Случайные величины, их виды и примеры

Дискретные и непрерывные виды случайных величин, законы распределения вероятностей их значений. Биноминальное распределение, формулы Бернулли и Пуассона. Понятие математического ожидания. Необходимые и достаточные условия независимости случайных величин.

Подобные документы

  • Изучение комбинаторики, основных формул теории вероятностей, геометрической вероятности, теорема Бернулли, Муавра-Лапласа, дискретных случайных величин и закона их распределения, а также определение коэффициента корреляции с помощью решения задач.

    задача, добавлен 24.02.2014

  • Случайная величина как величина, которая в результате опыта принимает заранее неизвестное численное значение. Непрерывные и дискретные случайные величины. Суммарная вероятность. Расчет различных вероятностей и построение многоугольника распределения.

    презентация, добавлен 01.11.2013

  • Свойства плотности распределения вероятностей непрерывной случайной величины. Характеристика особенностей математического ожидания. Основы расчета плотности распределения. Рассмотрение аспектов определения дисперсии и среднего квадратического отклонения.

    курсовая работа, добавлен 09.06.2014

  • Понятие и примеры случайного события. Правила сложения и умножения в комбинаторике. Формулы вычисления вероятностей. Локальная и интегральная теоремы Муавра–Лапласа. Классы функций распределения. Непрерывные случайные величины. Закон больших чисел.

    краткое изложение, добавлен 21.03.2018

  • Непрерывные случайные числа, функция распределения вероятности. Вычисление математического ожидания функции дискретной случайной величины. Дисперсия и стандартное отклонение. Конфликт между несмещенностью и эффективностью. Среднеквадратичная ошибка.

    презентация, добавлен 26.01.2015

  • Понятие случайных событий и величин в математической статистике. Основные определения и формулы, отражающие механизм дискретного распределения чисел. Очерк правил решения алгебраических и геометрических примеров со случайными пороговыми значениями.

    учебное пособие, добавлен 13.01.2017

  • Теория вероятностей как математический аппарат для изучения закономерностей случайных событий и связанных с ними случайных величин. Использование вероятностных и статистических методов в современной физике, технике, экономке, биологии и медицине.

    курсовая работа, добавлен 11.06.2014

  • Повторения Бернулли как повторные независимые испытания, этапы их реализации и предъявляемые требования, изучение примеров. Формула Пуассона, ее выведение. Понятие и содержание случайной величины. Числовые характеристики дискретной случайной величины.

    контрольная работа, добавлен 20.02.2011

  • Гамма-распределения, график функции распределения числа дефектных изделий. Определение квантиля порядка. Распределения Пирсона, Стьюдента, Фишера и Пуассона. Центральная предельная теорема. Экспоненциальные и логарифмически нормальные распределения.

    реферат, добавлен 24.11.2010

  • Важнейшие классы и методы случайных процессов. Конечномерные распределения винеровского процесса. Дискретная цепь Маркова. Евклидово пространство случайных величин. Корреляционная теория. Теорема Фубини. Производная и интеграл. Канонические разложения.

    учебное пособие, добавлен 17.04.2013

  • Ознакомление с графическими методами представления данных и методами биостатистики. Изучение законов распределения дискретных случайных величин: биномиального распределения (Бернулли) и распределения Пуассона. Анализ эмпирических законов распределения.

    реферат, добавлен 10.11.2017

  • Предмет теории вероятности и ее задачи. Элементарные и сложные события. Частота событий и вероятность случайных событий. Классический способ задания вероятности. Теорема Муавра–Лапласа, схема Бернулли, теорема Пуассона. Распределение случайных величин.

    шпаргалка, добавлен 09.09.2011

  • Математический поиск вероятности события. Расчет двухмерных случайных величин. Теоремы сложения и умножения вероятностей. Закон распределения функции случайного аргумента. Изучение формулы полной вероятности. Математическое ожидание произведения величин.

    контрольная работа, добавлен 29.11.2015

  • Элементы теории вероятностей. Случайные события и их вероятности. Теоремы умножения и сложения вероятностей. Формула полной вероятности и Байеса. Повторные независимые испытания. Формула Бернулли. Дискретные случайные величины. Функция распределения.

    учебное пособие, добавлен 23.02.2011

  • Характеристика теории случайных процессов как науки, изучающей закономерности случайных явлений и динамики их развития. Особенности случайных функций, сечения, математического ожидания и реализации случайного процесса, его классификация и формулы.

    доклад, добавлен 23.04.2014

  • Проверка гипотезы о нормальном распределении случайных величин по критерию Пирсона, анализ их зависимости. Построение полигона и гистограмм относительных частот. Определение выборочного коэффициента корелляции. Уравнения и графики прямых линий регрессии.

    контрольная работа, добавлен 27.10.2011

  • Понятие случайной величины в статистическом анализе, дискретные и непрерывные случайные величины. Свойства дифференциальной функции распределения вероятностей. Статистические функции непрерывных распределений. Изучение в Microsoft Excel данных функций.

    курсовая работа, добавлен 06.10.2011

  • Виды распределения, его законы. Дискретное и непрерывное распределение. Свойства случайных величин. Эмпирические функции распределения. Параметры функции нормального распределения. Вычисление выравнивающих частот кривой нормального распределения.

    реферат, добавлен 29.03.2018

  • Понятие нормального распределения, также называемого гауссовским распределением, его свойства и причины его популярности в финансах. Моделирование нормальных случайных величин. Определение коэффициента Шарпа. Вычисление вероятностей и риск-метрик.

    эссе, добавлен 01.06.2014

  • Математическое ожидание, дисперсия, среднее квадратичное отклонение. Биноминальный закон распределения. Теория массового обслуживания. Закон больших чисел и теорема Бернулли. Вероятность попадания на малый интервал времени двух или более событий.

    лекция, добавлен 29.06.2016

  • Основные закономерности теории вероятностей. Элементы комбинаторики. Система случайных величин. Вероятностный смысл плотности распределения. Законы больших чисел. Линейная регрессия. Статистическая проверка гипотез. Понятие о множественной корреляции.

    учебное пособие, добавлен 08.12.2013

  • Комплексный анализ непрерывности функции. Возведение числа в степень. Экстремум функции независимых переменных. Статические оценки параметров распределения. Характеристики непрерывных случайных величин. Функция распределения вероятностей и ее свойства.

    лабораторная работа, добавлен 15.05.2020

  • Понятие двумерной случайной величины и закон ее распределения. Особенности дискретных и непрерывных величин, плотность вероятностей. Числовые характеристики двумерной случайной величины, математическое ожидание, дисперсия, корреляционный момент.

    лекция, добавлен 08.12.2015

  • Анализ классического определения вероятности. Описание теорем сложения и умножения вероятностей. Формула полной вероятности и формула Байеса. Изучение дискретных случайных величин. Нормальный закон распределения. Варианты задач по теории вероятности.

    методичка, добавлен 27.05.2016

  • Изучение решения задач по математической статистике и теории вероятностей с помощью формулы Бейеса и Бернулли. Определение константы, вычисление математического ожидания и дисперсии величины X, а также расчет и построение графика функции распределения.

    контрольная работа, добавлен 19.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.