Числові методи

Ознайомлення із теоремою Банаха. Означення та математичний запис просторів метричного, лінійного, R(n) n-мірних векторів, R(nхn) квадратних матриць. Розгляд поняття наближених чисел, визначення їх граничних похибок суми, різниці, добутку та ділення.

Подобные документы

  • Розв’язування систем алгебраїчних рівнянь. Алгоритм зведення систем поліноміально-нелінійних матричних рівнянь, що задані над множиною некомутуючих матриць, до задач на власні значення. Аналіз похибок заокруглення та ефективності побудованих алгоритмів.

    автореферат, добавлен 29.01.2016

  • Сутність визначників, їх класифікація та типи, характерні особливості та властивості, розклад за елементами рядка або стовпця, порядок і принципи обчислення. Поняття та форми матриць, існуючі дії та операції над ними. Поняття рангу матриці, її значення.

    лекция, добавлен 08.08.2014

  • Розробка методу визначення всіх унікальних дільників поліноміальних матриць над довільним полем. Факторизація кліткових матриць над кільцями головних ідеалів за допомогою факторингу їх діагональних елементів і розрахунку лінійних матричних рівнянь.

    автореферат, добавлен 25.07.2015

  • Основні означення та властивості графів. Використання матриць інцилентності та суміжності для подання графі. Подання графа списками пар і суміжності. Розгляд ейлерової ломиголовки "Кенігзберзьких мостів". Алгоритм Флері побудови ейлерового циклу.

    курсовая работа, добавлен 27.09.2017

  • Основи побудови експериментальної моделі визначення похибки в роботі генератора псевдовипадкових чисел у різних середовищах програмування, аналіз критерію Пірсона. Принципи використання математичної статистики, що показує рівень відхилення показників.

    статья, добавлен 30.07.2016

  • Розгляд елементів матричного числення. Визначення матриць та алгебраїчні дії над ними. Правило обчислення визначників 2-го, 3-го порядків. Розклад визначника вищого порядку за елементами рядка. Опис його властивостей. Поняття алгебраїчного доповнення.

    лекция, добавлен 19.08.2017

  • Особливість вивчення алгоритмів виконання будь-якої арифметичної дії. Аналіз використання властивостей множення в роботі з раціональними числами. Основна характеристика визначення знаку добутку та проведення множення модулів у "зручному" порядку.

    конспект урока, добавлен 17.09.2018

  • Поняття векторів, їх види, лінійна залежність, коллінеарність і компланарність, визначення координат. Обчислення скалярних добутків. Приклади застосування векторів до задач мікроекономіки. Прямокутна декартова система координат на площині та у просторі.

    реферат, добавлен 19.11.2009

  • Вивчення вектора, як одного із фундаментальних понять сучасної математики. Доведення відповідних теорем, щодо визначення векторів. Вимоги до операції віднімання векторів, та його множення на число. Поняття про аксіоматичний метод. Аксіоми та теореми.

    дипломная работа, добавлен 12.02.2013

  • Конструкції над ґратками, за допомогою яких можна отримати ґратку нормальних дільників вінцевого добутку, виходячи з будови аналогічних ґраток його компонент. Поняття амальгамованого об'єднання та розшарованого добутку частково впорядкованих множин.

    автореферат, добавлен 20.04.2014

  • Означення та властивості векторів. Визначення векторних проекцій на осі координат через модулі та кути у скалярній формі. Застосування теореми косинусів. Пошук напруженості електростатичного поля міх двома зарядами з урахуванням принципу суперпозиції.

    статья, добавлен 03.03.2015

  • Поняття збіжності числових рядів. Використання нескінченності у розрахунках сум. Ознаки збіжності Куммера, Раабе та Єрмакова. Доведення теореми Гаусса. Додатно оборотні оператори банахового простору. Розгляд гіпергеометричного та біноміального рядів.

    курсовая работа, добавлен 05.12.2014

  • Визначення сутності симплекс-методу, як ітераційної обчислювальної процедури. Характеристика порядку розв’язування задачі лінійного програмування симплексним методом. Розгляд системи обмежень у векторній формі. Вивчення критерія оптимальності плану.

    лекция, добавлен 14.02.2015

  • Особливості конструктивного методу розв’язання систем алгебраїчних рівнянь, заданих над полем комплексних чисел. Огляд цього алгоритму як модифікації методу матричної лінеаризації Зворотній аналіз похибок заокруглення для побудованих алгоритмів.

    автореферат, добавлен 28.09.2014

  • Основні тригонометричні формули Лобачевского. Де застосовують геометрію Мінковського. Властивості тригонометричних і гіперболічних функцій. Геометричні властивості площини Мінковського-Банаха. Внутрішня геометрія поверхні і загальна геометрія Рімана.

    учебное пособие, добавлен 29.10.2012

  • Розгляд проблеми класифікації напівгрупових сполук за допомогою їх гомоморфізмів та ідемпотентів. Визначення конструкцій афінного розширення за теоремою Калужніна-Краснера. Описання основних матричних типів декомпозицій вільних i комутативних напівгруп.

    автореферат, добавлен 12.02.2014

  • Історичні відомості про векторну алгебру (поняття та її основні засновники). Вектори і лінійні дії з векторами. Вектори в системі координат. Скалярний добуток векторів. Система координат. Векторний добуток двох векторів. Мішаний добуток векторів.

    лекция, добавлен 08.08.2014

  • Доведення нерівностей за допомогою означення, сутність синтетичного та аналітичного методу. Структура класичних нерівностей між середніми та їх доведення. Наслідки з нерівності Коші. Застосування властивостей функцій та методів математичного аналізу.

    методичка, добавлен 13.07.2017

  • Дослідження конструкції та алгоритму ізоморфних занурень скінченних метричних просторів і властивостей відстані Громова-Хаусдорфа між ними. Поняття експоненти і континуальної родини попарно неізоморфних однорідних локально скінченних метричних просторів.

    автореферат, добавлен 24.06.2014

  • Особливості прямих та обернених теорем теорії наближень. Визначення аналогів нерівностей Джексона і Бернштейна. Оцінка похибки наближених розв’язків задачі Коші для диференціально-операторних рівнянь методом Келі. Побудова векторів експоненціального типу.

    автореферат, добавлен 28.09.2015

  • Доведення iзоморфного занурення вiльного добутку скiнченних груп. Визначення перетворення всіх нескінчених слів. Гомоморфiзм і мономорфiзм автоматних пiдстановок. Схема автомату, що задає твiрнi вiльного добутку двох циклiчних груп третього порядку.

    статья, добавлен 24.11.2016

  • Історія поняття числової функції і сучасне її означення. Графічне представлення та його перетворення, відображення множини дійсних чисел. Парні і непарні функції, періодичність тригонометричних функцій, критичні точки функції, максимуми і мінімуми.

    лекция, добавлен 26.01.2014

  • Необходимость существования парадоксальности. Изучение парадоксов Галилея, Банаха и Рассела, применение их в науке. Решение алгебраических уравнений с многомерной системой координат. Логика и математика комплексных чисел, их противоречивая природа.

    реферат, добавлен 12.03.2016

  • Послідовності незалежних випробовувань. Числові характеристики, математичне сподівання та дисперсія випадкових величин. Функції випадкового аргументу, закон її розподілу. Закон великих чисел. Теореми Чебишева та Бернулі. Поняття про теорему Ляпунова.

    реферат, добавлен 05.05.2011

  • Класичне і статистичне означення ймовірності. Теореми Лапласа, формула Пуассона. Відхилення відносної частоти від сталої імовірності в незалежних випробуваннях. Найімовірніше число появ події. Числові характеристики дискретних випадкових величин.

    учебное пособие, добавлен 14.07.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.