История открытия комплексных чисел

Этапы разработки системы исчисления в Древней Греции, создание дробей в Египте и Вавилоне. Обсуждение арифметической природы мнимых чисел, возможности дать им геометрическое обоснование в течение XVII века. Геометрическое истолкование комплексных чисел.

Подобные документы

  • Обнаружение первых задач, связанных с извлечением квадратного корня. Применение теоремы Пифагора для нахождения стороны прямоугольного треугольника. Использование в математике мнимых чисел, понимаемых как квадратные корни из отрицательных чисел.

    доклад, добавлен 22.10.2020

  • История и сущность цепных дробей как математического выражения. Принципы разложения в непрерывную дробь. Приближение вещественных чисел к рациональным, особенности разработки солнечного календаря. Доказательство иррациональности чисел с помощью уравнений.

    доклад, добавлен 06.12.2014

  • Исследование роли простых чисел в криптографии, генерации случайных чисел, навигации, имитационном моделировании. Определение закономерность распределения простых чисел в ряду натуральных чисел. Составление системы комбинаций арифметических прогрессий.

    статья, добавлен 30.03.2017

  • Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательство некоторых основных планиметрических теорем: длины отрезка, коллинеарности трех точек, четырех точек одной окружности, правильного треугольника.

    курсовая работа, добавлен 22.04.2011

  • Развитие математики в Древнем Египте в период с III века до н.э. Проведение умножения египтянами с помощью сочетания удвоений и сложений. Использование иероглифов для изображения знаков сложения или вычитания. Древнеегипетская нумерация (запись чисел).

    реферат, добавлен 17.04.2017

  • Построение множества комплексных чисел. Рассмотрение прямоугольной (декартовой) системы координат на плоскости. Операции сложения и умножения с векторами. Комплексные функции действительного аргумента. Вычитание равенств чисел из формулы Эйлера.

    лекция, добавлен 09.07.2015

  • Аксиоматическая теория натуральных чисел, рациональных, действительных, комплексных чисел и кватернионов. Характеристика рационального числа через его представление в виде десятичной дроби. Комплексные двойные и дуальные числа. Усиленная аксиома Кантора.

    учебное пособие, добавлен 16.06.2015

  • Применение персональных компьютеров к решению проблем выявления закономерности распределения простых чисел и подтверждения гипотезы Эйлера–Гольдбаха. Доказывание существования бесконечного множества простых чисел. Вычисление таблицы простых чисел.

    статья, добавлен 26.04.2019

  • Рассмотрение кватернионов как некоммуникативной системы гиперкомплексных чисел четвертого порядка; их применение в различных областях науки. Функции вещественных переменных. Сравнение логарифма кватерниона с логарифмами вещественных и комплексных чисел.

    статья, добавлен 29.01.2019

  • Ознакомление с историей возникновения и областью применения цепных дробей. Изучение приближения действительных чисел (рациональных дробей с заданным ограничением для знаменателей, бесконечной последовательности рациональных чисел, наилучших приближений).

    курсовая работа, добавлен 01.07.2014

  • Понятие простого числа и арифметической прогрессии. Обоснование существования многого количества арифметических прогрессий, образованных из разных простых чисел. Исследование простых чисел в вопросе их принадлежности к арифметической прогрессии.

    статья, добавлен 17.02.2019

  • История открытия алгебраических чисел: действительного числа и мнимой единицы. Открытие метафизиком Смирновым В.В. еще двух алгебраических чисел: доказательства, расчеты, научное обоснование. Полезность данного открытия на примерах решения уравнений.

    научная работа, добавлен 30.04.2014

  • История появления проблем простых чисел. Асиптотический Закон рапределения простых чисел в натуральном ряду. Роль простых чисел в математике. "Тернарная" проблема Гольдбаха. Список проблем для Теории чисел, аналогичный списку Гильберта, его описание.

    статья, добавлен 24.08.2020

  • Натуральные числа, их формальное и аксиоматическое определение. История науки, изучающей чистые, формальные свойства натуральных чисел. Системы счисления, методы обозначения и теория чисел. Арифметические операции и расширение до целых чисел и дальше.

    реферат, добавлен 25.12.2014

  • Определение сущности числа, история его происхождения. Основные функции количественных натуральных числовых единиц. Система записи чисел в Древнем Риме и Вавилоне. Рассмотрение особенностей счета у народа майя. Славянские цифровые знаки-буквы с титлами.

    презентация, добавлен 19.01.2015

  • Основные этапы зарождения и развития чисел в человеческом обществе, оценка их роли и значения. Особенности численной системы племени майя, Древнего Египта, арабских и славянских народов. Число судьбы человека, его определение. Значение чисел по Пифагору.

    презентация, добавлен 21.01.2013

  • Представление целых чисел с помощью письменных знаков. Характеристика аспектов биномиальной теоремы. Методика распределения простых чисел. Рассмотрение рациональных чисел как средства измерения. Теорема Лиувилля и конструирование трансцендентных чисел.

    книга, добавлен 25.11.2013

  • Составление "коллекции" простых чисел способом "решето Эратосфена". Формулирование и возможности разрешения проблемы Гольдбаха-Эйлера. Рассмотрение линейных, плоских и телесных фигурных чисел. История многоугольных и дружественных чисел в математике.

    реферат, добавлен 08.12.2017

  • Этапы развития математических знаний: формирование понятия геометрической фигуры и числа, изобретение арифметических операций, появление дедуктивной математической системы. Древнейшие древнеегипетские математические тексты. Нумерация и разложение чисел.

    реферат, добавлен 19.12.2010

  • Система счисления как совокупность правил наименования и изображения чисел с помощью конечного набора символов, называемых цифрами. Развернутая форма записи чисел. Алгоритм перевода чисел из любой системы счисления в десятичную. Таблица сложения чисел.

    контрольная работа, добавлен 27.06.2012

  • Понятия о комплексных числах, история их применения при решении линейных дифференциальных уравнений и вычислении интегралов. Правила сложения, вычитания, умножения и деления комплексных чисел. Порядок решения уравнений с комплексными переменными.

    реферат, добавлен 06.03.2010

  • Понятие блуждания, нахождение биномиальных коэффициентов. История развития фигурных чисел, характеристика их основных видов. Вычисление многоугольных чисел и проверка свойств фигурных чисел. Исследования Пьера Ферма, специфика пирамидальных чисел.

    курсовая работа, добавлен 14.06.2017

  • История математических исследований простых чисел как натуральных чисел, имеющих два различных натуральных делителя - единицу и самого себя. Представление простых чисел в виде значений квадратных многочленов. Описание спирали простых чисел С.М. Улама.

    статья, добавлен 28.03.2019

  • Закон сохранения количества чисел джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Изоморфные свойства рядов четных и нечетных чисел натурального ряда. Определение простоты произвольного целого числа и факторизация.

    учебное пособие, добавлен 15.09.2012

  • Зарождение и история развития систем счисления. Позиционные и непозиционные системы. Представление чисел с фиксированной и плавающей запятой. Перевод целых чисел из одной позиционной системы счисления в другую. Представление целых чисел в компьютерах.

    лабораторная работа, добавлен 04.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.