Интеграл и его применение
История интегрального исчисления и вопросы интегрального исчисления. Вклад физики в науку интегрального исчисления. Дифференциальное и интегральное исчисление и его применение. Определение, свойства интеграла. Криволинейная трапеция, стандартные картинки.
Подобные документы
История интегрального исчисления. Основные этапы, характеризующие метод Архимеда. Общий принцип Кавальери для площадей плоских фигур. Определение и свойства интеграла. Способы нахождения площади криволинейной трапеции. Применение интеграла в физике.
реферат, добавлен 19.10.2010Систематизация и закрепление основных знаний учащихся о первообразной, интеграле и дифференциале. Роль Лейбница, Бернулли и Ньютона в становлении интегрального исчисления. Сущность процесса интегрирования. Применение интеграла в различных областях науки.
презентация, добавлен 23.06.2013Роль Лейбница в развитии математического анализа. История интегрального исчисления. Интегрирование тригонометрических функций, теория поверхностных интегралов, определённый и несобственный интегралы. Криволинейная трапеция. Дифференциальные уравнения.
контрольная работа, добавлен 29.01.2013Определение и характерные свойства интеграла, история развития соответствующего исчисления. Криволинейная трапеция, методика ее построения и анализа. Свойства определенного интеграла, направления его применения. Исследование набора стандартных картинок.
курсовая работа, добавлен 12.11.2014Определение понятия интеграла. Ознакомление с историей появления новой ветви математики - интегрального исчисления. Рассмотрение особенностей отыскивания функций по их производным. Особенности понятий бесконечности, движения и функциональной зависимости.
презентация, добавлен 11.05.2016Основные теоремы интегрального исчисления. Задача на нахождение площади криволинейной трапеции. Определенный интеграл как предел интегральной суммы. Рассмотрение основной теоремы Ньютона-Лейбница. Свойства интеграла с переменным верхним пределом.
лекция, добавлен 17.01.2014Интегралы и числовые ряды. Вычисление неопределенного и несобственного интеграла. Разложение функций в ряд Тейлора. Построение графика исходной функции. Решение дифференциального уравнения с помощью операционного исчисления (преобразования Лапласа).
лабораторная работа, добавлен 25.11.2014Задача интегрального и дифференциального исчисления. Свойства неопределённого интеграла. Метод непосредственного интегрирования, интегрирования по частям. Интегрирование рациональных дробей, тригонометрических функций, простейших иррациональных функций.
презентация, добавлен 24.09.2019Нахождение производной или дифференциала функции как основная задача дифференциального исчисления. Свойства неопределенного интеграла. Процесс интегрирования иррациональных выражений, замена переменной интегрирования по частям в определенном интеграле.
контрольная работа, добавлен 11.05.2012Определение абсолютной и относительной ошибки при помощи метода дифференциалов. Расчет линейной аппроксимации, применение метода интегралов для вычисления площади, работы силы. Практика решения характеристических уравнений. Общее решение ЛОДУ, ЛНДУ.
контрольная работа, добавлен 11.04.2009Свойства циклоиды, её геометрическое определение. Площадь и длина дуги арки циклоиды. Объём тела, полученного вращением арки. Таутохронное свойство и применение его для создания наилучшего маятника. Кривые линии до и после интегрального исчисления.
курсовая работа, добавлен 02.06.2016Использование интегрального исчисления для исследования процессов, происходящих в экономике. Изучение состояния рыночного равновесия. Определение величины потребительского излишка при покупке товара, добавочной выгоды производителя при продаже продукции.
контрольная работа, добавлен 17.09.2013Формула Ньютона-Лейбница как один из ключевых элементов математического анализа и основа для интегрального исчисления. Характеристика теоремы о среднем значении для определенного интеграла. Определение производной как предела разностного отношения.
доклад, добавлен 02.11.2014Интегральное и дифференциальное исчисления функций одной переменной. Числовые множества. Предел и непрерывность функций. Производная и дифференциал. Кривизна и кручение кривой. Интегрирование рациональных дробей. Критерий Коши собственного интеграла.
учебное пособие, добавлен 31.03.2016Возникновение в России систематической научной работы неразрывно связано с учреждением Академии Наук. Леонард Эйлер и его трактаты: "Введение в анализ бесконечно малых", "Основания дифференциального исчисления" и "Основания интегрального исчисления".
реферат, добавлен 05.03.2009Вычисление площади фигуры с помощью двойного интеграла в полярных координатах. Расчет объема тела с помощью тройного интеграла. Исследование сходимости числового ряда. Разложение функции f(x) в ряд Фурье. Общее и частное решение дифференциального уравнени
контрольная работа, добавлен 22.01.2012Основатели символического (операционного) исчисления. Оригиналы и изображения функций по Лапласу. Основные теоремы операционного исчисления. Дифференцирование изображения. Интегрирование оригинала и изображения. Отыскание оригинала по изображению.
курсовая работа, добавлен 27.02.2020Изучение задач линейного программирования (симплексный и геометрический методы), тройных интегралов и их приложения для решения геометрических, физических и других задач, отыскания коэффициентов Фурье, их применения в математических методах в экономике.
курсовая работа, добавлен 24.04.2011Первообразная функция и неопределенный интеграл. Восстановление функции по ее производной. Определение пройденного пути по заданной скорости движения. Интеграл и задача об определении площади. Свойства неопределенного интеграла. Примеры интегрирования.
курсовая работа, добавлен 22.04.2011Понятие первообразной, правила нахождения. Определенный интеграл и его свойства. Площадь криволинейной трапеции. Основное свойство первоообразных. Постоянный множитель, стоящий перед функцией. Интеграл как основное понятие математического анализа.
презентация, добавлен 16.09.2016Введение в анализ и дифференциальное и интегральное исчисление одного переменного. Локальные экстремумы и эскиз графика. Поведение функции вблизи точки разрыва и вычисление производной. Особенности дифференциального исчисления функций и его приложение.
контрольная работа, добавлен 08.05.2014Исследование этапов вычисления определенных интегралов с помощью формулы Ньютона-Лейбница. Нахождение первообразной подынтегральной функции. Доказательство основной теоремы анализа. Характеристика операций дифференциального и интегрального исчислений.
презентация, добавлен 18.09.2013Исчисление функций одной и нескольких переменных, его виды (дифференциальное, интегральное): правило Лопиталя, схема исследования функции и построения ее графика, скалярное поле, неопределенный интеграл. Кратные интегралы. Элементы теории векторных полей.
контрольная работа, добавлен 17.06.2014Возникновение элементарной математики, первые системы исчисления древних государств и основоположники математических школ. Создание аналитической геометрии, дифференциальное и интегральное исчисление. Основные этапы становления современной математики.
реферат, добавлен 08.12.2013Введение в анализ и дифференциальное исчисление функции одного переменного. Поиск промежутков выпуклости и точки перегиба заданной функции. Дифференциальное исчисление функций и его приложение. Интегральное исчисление функции одного переменного.
контрольная работа, добавлен 09.09.2015