Об одной краевой задаче для вырождающейся системы Бицадзе-Янушаускаса
Решение первой краевой задачи для вырождающегося дифференциального уравнения с частными производными при заданных условиях. Нахождение компонентов решения задачи, интегрирование неравенства. Области определения данной функции, ее частные случаи.
Подобные документы
- 101. Система расчета равновесного состояния упругой среды, ослабленной плоской симметричной трещиной
Решение интегро-дифференциального уравнения задачи о плоской трещине нормального разрыва в упругом пространстве. Построение рекуррентного процесса для определения последовательных приближений функции Гельдера. Использование формулы Адамара и Лагранжа.
статья, добавлен 29.05.2017 - 102. Задача Фараона
Математический метод решения задачи Фараона. Иррациональное алгебраическое число, которое является корнем уравнения восьмой степени, как ответ задачи. Сведение задачи к нахождению положительного корня уравнения. Суть геометрического решения задачи.
задача, добавлен 27.03.2013 Рассмотрение основных особенностей решения задачи Коши методом Эйлера-Коши, варианты оценки погрешностей вычислений. Общая характеристика способов постройки графиков решения дифференциального уравнения и интерполяционного многочлена в одних осях.
контрольная работа, добавлен 07.06.2013Общие понятия, определения и примеры дифференциальных уравнений. Дифференциальные уравнения I порядка, задача Коши. Уравнения с разделяющимися переменными, линейные уравнения. Теорема существования и единственности решения дифференциального уравнения.
курсовая работа, добавлен 16.04.2015Дифференциальные уравнения в частных производных. Задача Пуанкаре, правила ее решения. Приведение к каноническому виду дифференциального уравнения второго порядка от двух независимых переменных. Краевые задачи для математического равенства Лапласа.
шпаргалка, добавлен 04.04.2015Решение дифференциального уравнения. Изучение поведения интегральных кривых уравнения в случае, когда функция имеет точку бесконечного разрыва. Существование и единственность решения. Теорема Коши-Липшица. Понятие первого интеграла нормальной системы.
учебное пособие, добавлен 02.05.2014Алгоритм решения задачи интегрирования системы ОДУ методом Рунге-Кутты, условная минимизация функции нескольких переменных заданным методом. Решение задач с использованием программы Matlab с представлением необходимой графической и табличной информации.
курсовая работа, добавлен 20.02.2019Методика расчета нелинейных дифференциальных уравнений с частными производными, описывающих физические процессы. Этапы численного решения уравнений данного вида методом конечных разностей. Вычислительный шаблон для границы неправильной конфигурации.
курсовая работа, добавлен 10.12.2016Решение задач с параметрами в школьной программе. Методы решения уравнений и неравенств. Поиск области определения уравнения. Точки пересечения прямой с графиком функции. Система значений переменных. Множество всех допустимых значений уравнения.
контрольная работа, добавлен 04.12.2011Решение простейших дифференциальных уравнений первого порядка. Уравнения в полных дифференциалах, интегрирующий множитель. Нахождение интегрируемых комбинаций. Симметрическая форма системы дифференциальных уравнений. Приближенные методы интегрирования.
курсовая работа, добавлен 23.10.2017Рассмотрение численного решения нелинейного уравнения, описывающего распространения нелинейных волн в двухфазных континуумах. Построение системы линейных алгебраических уравнений и решение данной задачи с использованием метода конечных разностей.
статья, добавлен 27.09.2012Схема решения задачи на оптимизацию с применением дифференциальных исчислений. Исторические задачи, пути и направления их разрешения. Задачи геометрического содержания на нахождение наибольшего и наименьшего значения по Архимеду, Герону, Кеплеру.
реферат, добавлен 02.04.2012Разработка математических моделей эксплуатационной и интерференционной конкуренций на линейном ареале на базе систем уравнений с распределенными параметрами. Построение численного решения краевой задачи для системы нелинейных дифференциальных уравнений.
статья, добавлен 07.08.2020Описание метода конечных разностей на примере определения зависимости температуры от времени в различных точках стержня из теплопроводящего материала. Решение смешанной задачи для уравнения теплопроводности с заданными начальным и граничными условиями.
лабораторная работа, добавлен 27.04.2011Решение задачи, состоящей в определении максимального значения функции. Решение расширенной задачи симплекс-методом. Алгоритм метода искусственного базиса. Особые случаи применения симплекс-метода (Х.А. Таха). Правило выявления неограниченности решения.
лекция, добавлен 06.09.2017Рассмотрение вопроса численного интегрирования дифференциального уравнения Ферхюльста второго порядка с заданными начальными условиями. Сравнение приближенных вычислений данных с точным решением уравнения при расчетах в программе MathCAD рядом Тейлора.
статья, добавлен 30.09.2020- 117. Исследование функций
Нахождение производной функции, заданной явно, неявно или параметрически. Порядок исследования функции и построение ее графика. Методика вычисления интегралов. Частное решение дифференциального уравнения 1-го порядка. Изменение порядка интегрирования.
контрольная работа, добавлен 18.03.2012 Исследование нелокальной задачи, краевые условия которой существенно зависят от изменения коэффициента уравнения при младшей производной. Доказательство однозначной разрешимости поставленной задачи. Частное решение модифицированного уравнения Бесселя.
статья, добавлен 31.05.2013Метод усреднения в начально-краевой задаче для системы эволюционных уравнений Навье-Стокса. Математическое моделирование движения нелинейно-вязкой жидкости в вибрационном поле. Асимптотика поведения усредненной задачи для нелинейно-вязкой жидкости.
статья, добавлен 28.11.2016Задачи на нахождение площадей как наиболее распространённые в геометрии. Задача на нахождение минимума периметра треугольника. Теорема о средних. Частные случаи применения формулы Герона при решении задач на плоскости, равносторонний треугольник, квадрат.
реферат, добавлен 30.03.2016Исчисление общего интеграла дифференциального уравнения первого порядка и методом вариации постоянных (методом Лагранжа). Частное решение однородного линейного дифференциального уравнения второго порядка. Решение системы дифференциальных уравнений.
контрольная работа, добавлен 13.08.2014Изучение понятия дифференциального уравнения, связывающего независимую переменную, искомую функцию и её производные различных порядков. Общее и частное решение линейного и однородного дифференциального уравнения. Исследование метода вариации постоянной.
презентация, добавлен 03.05.2012Решение системы дифференциальных уравнений 8-го порядка. Случай переменных коэффициентов. Формула для вычисления вектора частного решения. Перенос краевых условий в произвольную точку интервала интегрирования. Счет методом прогонки С.К. Годунова.
курсовая работа, добавлен 25.03.2010Показано, как можно сингулярную задачу, решаемую вариационным методом в весовом пространстве, заменить аппроксимирующей задачей, не имеющей сингулярности. Решение задачи о минимуме функционала. Краевая задача для сингулярного дифференциального уравнения.
статья, добавлен 01.02.2019Понятие дифференциального уравнения. Определение функций производного порядка. Линейные дифференциальные уравнения с постоянными коэффициентами. Решение системы по методу Эйлера. Геометрическая интерпретация комплексных чисел и условия Коши-Римана.
лекция, добавлен 22.07.2015