Методический комплекс "Теория вероятностей и математическая статистика" для бакалавров

Программа курса высшей школы для ознакомления с задачами и методами теории вероятностей и математической статистики в объёме, достаточном для успешного практического использования в работе. Включает экзаменационные вопросы и образцы контрольных работ.

Подобные документы

  • 3адача определения закона распределения случайной величины или системы случайных величин по статистическим данным. Статистическое описание и выборочные характеристики двумерного случайного вектора. Применение однофакторного дисперсионного анализа.

    курсовая работа, добавлен 21.10.2017

  • Диаграмма Эйлера-Венна. Определение ряда распределения случайной величины и исчисление математического ожидания. Построение гистограммы относительных частот. Вычисление несмещенных оценок для дисперсии, случайной величины и математического ожидания.

    контрольная работа, добавлен 13.01.2011

  • Центральная предельная теорема теории вероятностей как совокупность предложений, устанавливающих условия возникновения нормального закона распределения. Теорема Ляпунова и Лапласа как простейшие формы центральной предельной теоремы и их доказательство.

    реферат, добавлен 18.03.2014

  • Определение сущности методов математической статистики в аналитической химии. Характеристика элементов математической статистики, используемых при обработке результатов измерений. Расчет дисперсии и среднего арифметического для выборки из результатов.

    реферат, добавлен 16.03.2015

  • Ознакомление с общими характеристиками теории вероятности. Применение теоремы Бернулли, формулы полной вероятности, центральной предельной теоремы. Сложение и умножение вероятностей. Нахождение оптимального решения, руководствуясь "правилом Лапласа".

    контрольная работа, добавлен 17.11.2015

  • Системы линейных уравнений и неравенств. Аналитическая геометрия на плоскости. Числовая последовательность и ее предел. Основные теоремы теории вероятностей. Первообразная и неопределенный интеграл. Основы математической статистики. Закон больших чисел.

    методичка, добавлен 23.09.2014

  • Понятие и примеры случайного события. Правила сложения и умножения в комбинаторике. Формулы вычисления вероятностей. Локальная и интегральная теоремы Муавра–Лапласа. Классы функций распределения. Непрерывные случайные величины. Закон больших чисел.

    краткое изложение, добавлен 21.03.2018

  • Научная дисциплина, предметом исследования которой являются математические методы систематизации и использования статистических данных для научных и практических выводов. Термин "статистика", производные. Основы статистики как математической дисциплины.

    реферат, добавлен 21.08.2015

  • Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.

    контрольная работа, добавлен 27.11.2017

  • Рассмотрение основных типов соединений в комбинаторике. Теорема сложения вероятностей совместных событий. Рассмотрение функции распределения в теории вероятностей. Вариационные ряды и их характеристика. Свойства эмпирической функции распределения.

    реферат, добавлен 18.04.2016

  • Распределение Бернулли в теории вероятностей. Функция и ряд распределения. Числовые характеристики положения и разброса. Асимметрия и эксцесс. Распределение Бернулли в математической статистике: точечная оценка параметра, интервальные оценки Бернулли.

    аттестационная работа, добавлен 22.05.2010

  • Расчет количества невозвратов кредитов и квадратичного отклонения. Дисперсия и среднее квадратичное отклонение случайной величины. Построение гистограммы частот по распределению выборки. Проверка гипотезы о числовом значении математического ожидания.

    контрольная работа, добавлен 25.05.2014

  • Основные этапы развития теории вероятностей. Классификация наблюдаемых событий и явлений: достоверные, невозможные и случайные. Определение понятий событие, его вероятность и частота, случайная величина. Применение теории вероятностей в современном мире.

    реферат, добавлен 27.02.2012

  • Существенная характеристика алгебры и сигма-алгебры событий, встречающихся в теории вероятностей. Изучение косвенных методов вычисления возможностей. Свойства операций сложения и умножения явлений. Особенность изучения основных законов де Моргана.

    контрольная работа, добавлен 25.11.2015

  • Изучение предмета теории вероятностей. Понятия условной и полной вероятности, случайных величин. Характеристика генеральной совокупности и выборки, вариационного ряда. Описание методов точечной и интервальной оценки, дисперсионного анализа, корреляции.

    учебное пособие, добавлен 10.05.2016

  • Уязвимость объектов и территорий, оценка вероятности разрушения, перерастания аварийных ситуаций в аварию. Вероятностный анализ безопасности объектов со специальными системами безопасности. Оценка риска для людей при воздействии негативных факторов.

    реферат, добавлен 02.04.2014

  • Понятие, предмет, задачи предмета "теории вероятностей", вероятность осуществления события, достоверное и противоположное событие. Вероятность осуществления двух или нескольких взаимно исключающих и независимых событий и вероятность их совпадения.

    контрольная работа, добавлен 19.12.2010

  • Классическое определение вероятностей. Искомая вероятность указанного события. Противоположные и несовместные события. Теорема умножения независимых событий. Повторные независимые испытания. Использование интегральной предельной теоремы Лапласа.

    контрольная работа, добавлен 20.01.2013

  • Основные понятия математической статистики, ее виды и их характеристики. Анализ экономической информации с помощью однофакторного дисперсионного анализа на примере города. Вычисление статистик, гипотез или выводов по существу эмпирических данных.

    курсовая работа, добавлен 08.01.2014

  • Типовые вероятностные задачи энергетического характера. Определение вероятностей случайных событий. Основные теоремы теории вероятностей. Законы распределения случайных величин, числовые характеристики их функций. Случайные явления, события и величины.

    учебное пособие, добавлен 15.06.2015

  • Рассмотрение элементов теории вероятностей. Испытание как осуществление комплекса условий. Элементарное событие – результат который может произойти при проведении испытания. Пространство совокупности элементарных событий – множество всех исходов испытания

    курсовая работа, добавлен 14.03.2022

  • Равномерное распределение вероятностей. Интегральная кривая распределения Вейбулла. Экспоненциальное распределение Гумбеля. Характеристики случайных функций. Метод рандомизации Монте-Карло. Вероятность редких событий (появление случайного события).

    курс лекций, добавлен 27.12.2015

  • Случай, случайные явления, события, величины, их законы, их свойства и операции над ними. Комплексное изучение истории возникновения, становления и развития теории вероятностей. Два знаменитых вопроса шевалье де Мере. Закон больших чисел в форме Бернулли.

    презентация, добавлен 10.02.2020

  • Теория вероятности как наука, которая изучает закономерности массовых случайных явлений. Знакомство с особенностями применения теории вероятности и математической статистики в экономике. Общая характеристика выборочного метода статистических исследований.

    статья, добавлен 25.03.2019

  • Вычисление вероятностей в классической схеме, геометрических, условных вероятностей с применением формул Байеса и полной вероятности. Анализ распределений случайных величин – дискретных, непрерывных, скалярных и векторных. Методы распределения функций.

    методичка, добавлен 16.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.