Деревья как частный вид графов
Мультиграф, в котором не допускаются петли, но пары вершин могут соединяться более чем одним ребром. Теоретико-множественное представление графов. Вид двоичного дерева поиска, в котором ключами являются латинские символы, упорядоченные по алфавиту.
Подобные документы
Алгоритм Тэрри поиска маршрута в связном графе, соединяющем вершины. Выделение простой цепи из полученного пути. Поиск оптимального пути с наименьшим числом дуг или ребер. Прообраз множества вершин, матрица смежности. Определение расстояния в графе.
лекция, добавлен 18.10.2013Простейшие задачи аналитической геометрии на плоскости и системы координат в геодезии и картографии. Применение матриц, элементов теории графов и систем линейных уравнений в географии. Исследования с помощью производных, дифференциалов и интегралов.
учебное пособие, добавлен 15.04.2014Основные понятия теории графов и ее приложения к исследованию линейных систем, задачам минимизации, а также сетевого планирования. Приведение примеров решения задач различной сложности с подробными объяснениями. Задачи для самостоятельной работы.
методичка, добавлен 18.06.2013Понятие индивидуальных предпочтений и удовлетворяющих ряд свойств, описываемых бинарными отношениями. Очерк развития ординального подхода в рамках математической логики. Анализ специальных классов линейного порядка. Свойства матриц смежности графов.
лекция, добавлен 29.09.2013Основные способы задания множеств. Анализ рефлексивных, симметричных и транзитивных бинарных отношений. Характеристика исследования ориентированных графов. Главные законы, определяющие свойства логических операций. Изучение элементарных булевых функций.
презентация, добавлен 06.09.2017Исследование свойств предфрактальных графов, порожденных затравкой, представляющей собой дерево. Использование степени фрактализации для определения исследуемого объекта. Оценка структуры относительно ее принадлежности к предфрактальным графам.
статья, добавлен 19.01.2018- 107. Цифровые автоматы
Понятие цифрового автомата, история разработки, современные тенденции. Составление таблицы соответствия. Основные понятия теории графов. Минимизация абстрактного автомата Мили. Исключение недостижимых состояний. Определение классов совместимости.
контрольная работа, добавлен 11.04.2012 - 108. Теории множеств
Исследование теории графов в 30-е годы ХХ в. Двудольные графы и возможность их применения для наглядного представления паросочетаний. Изучение условия Холла. Трансверсали семейств множеств. Определение степени вершины. Паросочетания специального вида.
лекция, добавлен 29.09.2013 - 109. Шарики в коробочках
Логические задачи и методы их решения. Разработка алгоритма, позволяющего за минимальное количество вопросов определить, в какой коробочке лежит шарик определенного цвета. Теория графов в математике. Решение системы линейных алгебраических уравнений.
презентация, добавлен 22.01.2014 Распределенные вычисления, рассматриваемые на примере модели синхронной отправки сообщений в сети, множество процессоров связанных модулями связи. Поиск центра неориентированного дерева, псевдокод алгоритма. Анализ трудоемкости разработанного алгоритма.
контрольная работа, добавлен 29.06.2012Свойства треугольной последовательности биномиальных коэффициентов Паскаля. Применение теории графов находит в современных геоинформационных системах. Статистические методы организации выборок, связь математической статистики с теорией вероятностей.
реферат, добавлен 13.11.2013Топологические и геометрические свойства графов. Теорема Штейница. Хроматический многочлен. Топология подмножеств евклидова пространства. Расстояние от точки до множества. Теоремы Лебега о покрытиях. Кривые на плоскости. Паракомпактные пространства.
книга, добавлен 28.12.2013Основы теории множеств, переключательных функций, комбинаторного анализа и теории графов. Диаграммы Эйлера, операции над множествами. Бинарные отношения и отображения. Свойства элементарных булевых функций. Основные понятия и определения комбинаторики.
учебное пособие, добавлен 11.10.2014- 114. О развертках куба
Исследование возможных разверток куба, порядок представления каждой из них в виде графов. Способы разреза куба для получения одиннадцати известных разверток. Отличительные особенности и свойства симметричных и ассиметричных разверток, их внешний вид.
статья, добавлен 04.05.2012 - 115. Алгоритмы на графах
Ориентированные и неориентированные графы, петля, кратные дуги и рёбра. Степень вершины, полустепень исхода и захода графа. Существование цикла и контура. Способы представления графов: матрица смежности, инцидентности, модифицированный список смежности.
презентация, добавлен 26.07.2015 - 116. Его величество граф
Граф в математике как картинка, где нарисовано несколько точек, некоторые из которых соединены линиями, принципы его построения, анализ. История возникновения графов и ученые, участвовавшие в разработке данной концепции. Задача о Кенигсбергских мостах.
презентация, добавлен 18.03.2013 - 117. Графы в математике
Теория графов как способ решения задач. Задачи о кёнигсбергских мостах Эйлера. Способы представления графа. Эйлерова линия, проходящая по всем ребрам в точности по одному разу. Зарождение еще одной области в математики в ходе решения головоломок.
контрольная работа, добавлен 07.11.2013 - 118. Изоморфизм графов
Изучение принципов установления изоморфизма или изоморфного вложения между заданными структурами при решении комбинаторно-логических задач и оптимизационных на графах. Пример решения задач распознавания изоморфизма. Определение вершины в алгоритме.
лекция, добавлен 23.01.2017 - 119. Леонард Эйлер
Леонард Эйлер — швейцарский, немецкий и российский математик, внесший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук. Эйлеровские исследования в области тригонометрии, комплексных чисел и графов.
презентация, добавлен 10.04.2012 - 120. Хроматические числа
Постановка и решение задачи в одномерном случае. Определение хроматического числа прямой и плоскости. Критическая конфигурация точек на плоскости. Построение раскрасок плоскости. Доказательство теорем Райского и Лармана-Роджерса. Изучение теории графов.
книга, добавлен 25.11.2013 - 121. Бинарные отношения
Язык бинарных и n-арных отношений. Декартово произведение множеств. Формы представления бинарных отношений. Использование ориентированных графов. Булевое произведение матриц. Подобия на множестве фигур плоскости. Изучение классов эквивалентности.
лекция, добавлен 19.06.2014 Рассмотрение применения дискретной математики в информатике. Применение теории графов в экономических задачах. Определение жадного алгоритма, решение задачи о максимальной загруженности линий. Описание алгоритма Дейкстра. Решение задачи Коммивояжера.
реферат, добавлен 07.10.2014Изучение основополагающих понятий теории графов: ориентированный граф и маршрут, орцепь, орцикл и сильная связность. Рассмотрение понятия эйлерова орграфа и доказание основной теоремы о таких графах. Анализ приложения орграфов к теории цепей Маркова.
контрольная работа, добавлен 29.01.2014История решения математической задачи о Кенигсберских мостах. Проблема посещения семи мостовых сооружений. Создание Леонардом Эйлером теория графов. Изучение систем, составление оптимальных маршрутов доставки грузов или маршрутизации данных в Интернете.
реферат, добавлен 20.09.2019Основные понятия теории множеств. Операции над ними. Свойства алгебраического тождества. Упорядоченные множества элементов. Структура и способы представления многомерных матриц. Правило получения обратной матрицы. Многомерно-матричное дифференцирование.
реферат, добавлен 16.01.2018