Высшая математика

Методика нахождения общего решения дифференциального уравнения при помощи приведения к каноническому виду. Алгоритм вычисления задачи Коши методом Даламбера. Порядок расчета первой смешанной задачи для уравнения теплопроводности на заданном отрезке.

Подобные документы

  • Уравнения, не содержащие явно неизвестной функции. Линейные дифференциальные равенства второго порядка. Правая часть специального вида. Нахождение решения неоднородного уравнения методом вариации произвольных постоянных. Подбор частного решения.

    реферат, добавлен 29.09.2013

  • Рассмотрение вопроса численного интегрирования дифференциального уравнения Ферхюльста второго порядка с заданными начальными условиями. Сравнение приближенных вычислений данных с точным решением уравнения при расчетах в программе MathCAD рядом Тейлора.

    статья, добавлен 30.09.2020

  • Задача Коши для уравнения струны - математическая модель физической задачи о колебаниях настолько большой струны, что влияние ее концов уже не сказывается на колебаниях других точек струны. Два семейства вещественных характеристик уравнений струны.

    статья, добавлен 17.07.2018

  • Три вида уравнений второго порядка, допускающих понижение степени. Порядок введения новой функции. Условие преобразования исходного уравнения в неполное уравнение первого порядка. Пример решения дифференциального уравнения заданного вида, расчет функции.

    презентация, добавлен 17.09.2013

  • Построение решения дифференциального уравнения. Подбор многочлена, описывающего полученное решение. Определение корней многочлена на полученном интервале. Алгоритм вычислений для классического метода Рунге-Кутта. Интерполяция функции на данном интервале.

    курсовая работа, добавлен 07.08.2013

  • Вычисление пределов функций. Правила вычисления производных. Нахождение наибольших и наименьших значений функции на отрезке. Запись уравнения касательной и нормали в общем виде. Область определения функции. Пересечение с осями координат, нули функции.

    контрольная работа, добавлен 29.04.2019

  • Решение всякой количественной математической задачи и нахождение "решения" y по заданным исходным данным. Задача решения уравнения Фредгольма первого рода. Устойчивость эквивалентна непрерывности обратного оператора. Нормы всех членов последовательности.

    реферат, добавлен 09.11.2017

  • Характеристика основных свойств наибольшего общего делителя двух натуральных чисел. Особенность решения диофантова уравнения первой степени. Проведение исследования алгоритма Евклида в школьном курсе математики. Определение наименьшего общего кратного.

    дипломная работа, добавлен 23.11.2019

  • Уравнение движения распространения сейсмических SH волн с учетом поглощения энергии, обусловленной коэффициентом межкомпонентного трения. Определение переменных коэффициентов дифференциального уравнения. Исследование системы интегральных уравнений.

    контрольная работа, добавлен 13.06.2015

  • Алгоритм обобщения итерационно-интерполяционного метода (ИИМ) для решения трехмерного волнового уравнения. Постановка задачи и метод построения разностной схемы. Устойчивость схемы ИИМ по начальным данным. Сходимость и примеры применения метода.

    статья, добавлен 04.05.2016

  • Линейное программирование как метод оптимизации. Общая задача линейного программирования и ее формулировка. Геометрическая интерпретация задачи, графический метод ее решения и область применения. Основные примеры задач, решаемых графическим методом.

    реферат, добавлен 11.11.2010

  • Современное обозначение непрерывных дробей. Работы Эйлера по теории цепных дробей. Метод нахождения наибольшего общего делителя. Корень квадратного уравнения с целочисленными коэффициентами. Метод приближенного решения дифференциальных уравнений.

    статья, добавлен 12.03.2012

  • Способы оценки погрешности численного решения нелинейных уравнений. Рекуррентная формула, которая используется для получения решения уравнения методом Ньютона. Алгоритм нахождения точки экстремума с использованием методики одномерной оптимизации.

    курсовая работа, добавлен 16.06.2021

  • Преобразование задачи Коши в эквивалентное ей интегральное уравнение Вольтерра второго рода. Применение топологического метода – принципа сжатых отображений. Условия существования решений задачи Коши. Дифференциальные свойства решений начальной задачи.

    статья, добавлен 11.11.2018

  • Применение общих утверждений о разрешимости квазилинейного операторного уравнения в резонансном случае. Рассмотрение задачи как периодической краевой задачи для одного скалярного уравнения. Важнейшая особенность проверки справедливости равенства.

    статья, добавлен 26.04.2019

  • Нахождение производной функции, заданной явно, неявно или параметрически. Порядок исследования функции и построение ее графика. Методика вычисления интегралов. Частное решение дифференциального уравнения 1-го порядка. Изменение порядка интегрирования.

    контрольная работа, добавлен 18.03.2012

  • Задача Коши для дифференциального уравнения первого порядка. Геометрический смысл - нахождение интегральной кривой, проходящей через заданную точку. Общее и частное решение. Дифференциальные уравнения первого порядка, разрешенные относительно производных.

    курсовая работа, добавлен 10.04.2011

  • Алгоритм выполнения задачи решения уравнения с одной переменной с нахождением всех его корней или установление доказательства, что корни отсутствуют. Понятие корня линейного равенства. Правила раскрытия скобок. Задания для самостоятельного решения.

    презентация, добавлен 14.10.2013

  • Математическая модели задачи планирования работы разнотипных машин с периодами простоя. Теорема о корректности приведения этой задачи к задаче комбинаторной оптимизации. Алгоритм нахождения нижней границы целевой функции возникающей задачи оптимизации.

    статья, добавлен 19.02.2016

  • Решение задачи Коши для дифференциальных уравнений методом Милна. Использование метода для систем уравнений первого порядка или приведенных к таким. Оценка устойчивости метода и числа шагов. Практическая сторона использования. Решение 30 примеров.

    курсовая работа, добавлен 09.06.2014

  • Рассмотрение обратной краевой задачи для эволюционного уравнения четвёртого порядка, возникающего в гидроакустике стратифицированной жидкости. Решение обратной задачи при граничных условиях. Теорема существования и единственности классического решения.

    статья, добавлен 27.09.2012

  • Основные черты задачи Дирихле для уравнения Пуассона и необходимость применения сеточной функции. Сущность Чебышевского метода, его обоснование и применение на практике. Характеристика основных задач метода простой итерации при заданном числе узлов.

    презентация, добавлен 30.10.2013

  • Особенности и специфика дифференциального уравнения. Теорема о нормальной форме уравнения, не разрешенного относительно производной в окрестности регулярной особой точки. Построение криминанты уравнения, точки касания криминанты с контактной плоскостью.

    курсовая работа, добавлен 08.01.2018

  • Порядок нахождения координат вектора в базисе. Способы решения системы линейных уравнений методом Гаусса, по правилу Крамера и через обратную матрицу. Определение пределов, производных, наибольшего и наименьшего значений функций. Вычисление интегралов.

    контрольная работа, добавлен 01.05.2010

  • Для обобщенного двуосесимметрического уравнения Гельмгольца в бесконечной полосе a поставлена задача с условиями на линии. При одних ограничениях на параметры уравнения установлено существование решения поставленной задачи, при других - единственность.

    статья, добавлен 31.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.