Разработка программ для вычислительной математики

Графическое отделение корней уравнения, алгоритм для уточнения одного из корней методом Ньютона. Разработка программы, которая, используя метод Гаусса с частичным выбором ведущего элемента, решает систему линейных уравнений и вычисляет вектор невязки.

Подобные документы

  • Разработка программы для построения графика временной функции в машинном и в реальном времени. Методы решения нелинейного уравнения: бисекции, хорд, простой итерации и Ньютона. Нахождение корней квадратного уравнения с применением алгоритма Горнера.

    курсовая работа, добавлен 16.02.2016

  • Разработка системы линейных алгебраических уравнений. Постановка задачи в матричной форме. Сущность метода Гаусса—Жордана (метода полного исключения неизвестных). Описание его алгоритма и пример текста программы. Анализ результатов системы уравнений.

    реферат, добавлен 17.03.2017

  • Улучшение сходимости ряда методом Куммера. Вычисление суммы степенного ряда и корней кубического многочлена. Определение определенных интегралов по формулам трапеции и Симпсона. Разработка методов решения системы нелинейных уравнений. Метод Ньютона.

    лабораторная работа, добавлен 18.12.2018

  • Суть метода Гаусса, его достоинства и недостатки. Алгоритм исключения неизвестных переменных. Запись программы в среде Pascal ABC для реализации данной модели. Нахождение матрицы, обратной к данной. Численное решение СЛАУ в вычислительной технике.

    контрольная работа, добавлен 26.09.2017

  • Характеристика алгоритма нахождения корней нелинейного уравнения приближенными методами. Замена производной конечной разностью как одна из интерпретаций метода Ньютона. Методика тестирования программного продукта в текстовом и графическом режиме.

    курсовая работа, добавлен 30.06.2014

  • Ознакомление с основными методами отделения корней алгебраических и трансцендентных уравнений. Определение и анализ отличий метода половинного деления от табулирования с постоянным шагом. Рассмотрение кода программы алгоритма уточнения корня уравнения.

    контрольная работа, добавлен 20.03.2015

  • Понятие и операции над матрицами. Вычисление определителей и решение систем линейных уравнений методом Гаусса. Вычисление обратной матрицы методом Гаусса. Разработка программы, позволяющей найти обратную матрицу и выполнить действия над матрицами.

    курсовая работа, добавлен 08.11.2016

  • Решение системы линейных алгебраических уравнений методом Гаусса. Программы решения нелинейных алгебраических уравнений методами дихотомии (половинного деления) и Ньютона (касательных). Численное интегрирование: формулы средних прямоугольников, Симпсона.

    контрольная работа, добавлен 15.05.2009

  • Решение систем линейных алгебраических уравнений (СЛАУ). Алгоритм решения СЛАУ методом Гаусса. Метод последовательного исключения неизвестных. Решение системы методом прогонки. Математическое моделирование самых разнообразных процессов с применением ЭВМ.

    курсовая работа, добавлен 17.06.2017

  • Принципы разработки математических моделей, алгоритмов и программ. Нахождение значения корней нелинейного уравнения. Метод секущих (модификация метода Ньютона). Описание входной и выходной информации. Построение графика и место поиска корня уравнения.

    контрольная работа, добавлен 08.07.2014

  • Решение системы линейных алгебраических уравнений с вещественными коэффициентами с помощью метода Гаусса. Описание метода, алгоритм решения. Разработка программы на языке Turbo Pascal в компьютерной среде Pascal ABC. Контрольный пример для отладки.

    контрольная работа, добавлен 26.09.2017

  • Ненулевой минор максимального порядка. Рассмотрение решения системы линейных алгебраических уравнений методом Гаусса. Использование метода последовательного исключения переменных. Порядок создания массива под матрицу с помощью программного языка C++.

    практическая работа, добавлен 25.12.2015

  • Разработка программы решений системы линейных уравнений методом итераций с предварительной оценкой числа необходимых шагов по заданной точности. Метод простой итерации. Перечень идентификаторов программы. Процедура проверки системы на сходимость.

    курсовая работа, добавлен 13.10.2017

  • Использование многопоточности при программировании. Математическое описание решения линейных алгебраических уравнений методом Гаусса и матричным методом. Теоретическое исследование, проектирование и анализ эффективности работы параллельных алгоритмов.

    курсовая работа, добавлен 24.09.2021

  • Метод Гаусса как самый распространенный метод решения систем линейных уравнений, схемы: единственного деления, частичного выбора, полного выбора, применение метода Зейделя. Сравнение прямых и итерационных методов. Практическая часть, примеры решения.

    курсовая работа, добавлен 07.05.2009

  • Изучение программы по нахождению корней системы из двух нелинейных уравнений методами Ньютона и простых итераций. Характеристика графических возможностей современных ПК на примере применения графических функций языка С++ с использованием VGA-графики.

    курсовая работа, добавлен 18.07.2012

  • Постановка, алгоритм решения системы линейных алгебраических уравнений методом Гаусса в среде программирования Turbo Pascal. Описание алгоритма, блок-схема задачи. Описание используемых операторов, проверка на наличие ошибок, результаты выполнения.

    курсовая работа, добавлен 16.01.2011

  • Изучения алгоритма решения нелинейных уравнений с помощью метода Ньютона. Обзор существующих методов решения нелинейных уравнений: итераций, Ньютона, дихотомии и хорд. Алгоритм модификации метода Ньютона. Описание, тестирование и отладка программы.

    курсовая работа, добавлен 12.12.2013

  • Изучение последовательного алгоритма Гаусса решения систем линейных уравнений. Программная реализация последовательного алгоритма Гаусса. Зависимость времени реализации алгоритма от размера матрицы. Вычисление эффективности параллельного алгоритма.

    курсовая работа, добавлен 27.12.2019

  • Основные особенности решения системы линейных алгебраических уравнений методом Крамера. Сравнительный анализ численных методов. Приблизительное нахождение корней уравнений. Характеристика теоремы Больцано-Коши. Анализ интерполяционной формулы Лагранжа.

    курсовая работа, добавлен 08.11.2012

  • Основные этапы процедуры подготовки и решения задачи на ЭВМ. Понятие и свойства алгоритма. Краткое описание сущности метода касательных (метода секущих Ньютона). Разработка программы на языке Паскаль 7.0 для решения нелинейного уравнения данным методом.

    контрольная работа, добавлен 26.03.2013

  • Определение метода решения квадратной системы линейных алгебраических уравнений. Разбор языковых средств в системе Крамера и Гаусса. Блок-схема программы и характеристика ее компонентов и переменных. Описание принципа работы созданной программы.

    контрольная работа, добавлен 06.07.2016

  • Методические рекомендации по аппроксимации методом наименьших квадратов. Метод последовательного исключения неизвестных (метод Гаусса). Количественная оценка погрешности аппроксимации. Алгоритм и код программы. Методика решения нормальных уравнений.

    курсовая работа, добавлен 18.10.2017

  • Построение четырехлепестковой розы, заданной уравнением в полярных координатах. Отделение корней уравнений с использованием графиков. Проектирование эллиптического параболоида, заданного с помощью канонического уравнения. Исходный код в системе Matlab.

    лабораторная работа, добавлен 07.06.2015

  • Определение корней нелинейного уравнения путем построения графика функции. Создание таблицы данных с заданным шагом при помощи Microsoft Office Excel 2007. Описание метода простых итераций. Составление блок-схемы функции. Разработка протокола программы.

    задача, добавлен 21.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.