Дифференциальные уравнения в науке и технике
Применение дифференциальных уравнений в различных областях науки. Исторические личности и этапы развития дифференциальных уравнений. Практическое применение их в медицине, при создании аппарата "искусственная почка". Дифференциальные уравнения в биологии.
Подобные документы
Преобразование задачи Коши в эквивалентное ей интегральное уравнение Вольтерра второго рода. Применение топологического метода – принципа сжатых отображений. Условия существования решений задачи Коши. Дифференциальные свойства решений начальной задачи.
статья, добавлен 11.11.2018Три вида уравнений второго порядка, допускающих понижение степени. Порядок введения новой функции. Условие преобразования исходного уравнения в неполное уравнение первого порядка. Пример решения дифференциального уравнения заданного вида, расчет функции.
презентация, добавлен 17.09.2013Изучение понятия дифференциального уравнения, связывающего независимую переменную, искомую функцию и её производные различных порядков. Общее и частное решение линейного и однородного дифференциального уравнения. Исследование метода вариации постоянной.
презентация, добавлен 03.05.2012Виды матриц, используемых в математике для компактной записи систем алгебраических или дифференциальных уравнений. История происхождения и свойства магического квадрата. Применение массивов в технике и программировании. Прогрессивные матрицы Равена.
реферат, добавлен 21.03.2022Применение метода простых итераций и метода Ньютона для решения систем нелинейных уравнений. Интерполирование функций с помощью формулы Лагранжа. Способы вычисления однократных интегралов. Решение обыкновенных дифференциальных уравнений и систем.
учебное пособие, добавлен 18.09.2012Асимптотические представления некоторых типов решений одного класса нелинейных неавтономных дифференциальных уравнений второго порядка и достаточные условия существования таких решений. Медленно меняющаяся функция. Применение правила Лопиталя.
статья, добавлен 27.06.2016Особенности системы дифференциальных уравнений как автономной системы для функций x (t) и y (t). Специфика картины фазовых кривых, называемой фазовым портретом системы. Анализ расположения траекторий, определяемого корнями характеристического уравнения.
курсовая работа, добавлен 29.11.2015Краевая задача для уравнения эллиптического типа. Вариационные постановки основных эллиптических задач. Прямые методы вариационного исчисления. Неединственность решения дифференциальных уравнений. Граничное условие первого, второго и третьего рода.
курсовая работа, добавлен 08.10.2013Метод Эйлера как наиболее простой численный метод решения обыкновенных дифференциальных уравнений. Общая схема численных методов. Локальная ошибка дискретизации метода Эйлера. Применение многошаговой системы перехода от точки (Xi, Yi) к следующей.
контрольная работа, добавлен 02.05.2013Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Определение точки равновесия (нулевого решения) однородной системы линейных уравнений. Расчет поведения фазовых кривых линейной автономной системы на плоскости.
контрольная работа, добавлен 29.11.2015Численные методы решения нелинейных уравнений. Отделение корней уравнения. Численные методы интегрирования. Формулы прямоугольников, трапеций. Формула Симпсона. Численные методы решения обыкновенных дифференциальных уравнений. Метод Эйлера и Рунге-Кутты.
методичка, добавлен 25.03.2015Сферы применения общего уравнения Риккати. Мультипликативный интеграл, вычисленный из матрицы коэффициентов как фундаментальное решение системы дифференциальных уравнений. Анализ условий, согласно которым матрица является функционально коммутативной.
статья, добавлен 03.03.2018Понятие уравнений третьей степени. Исторические факты решения уравнений высших степеней. Решение уравнений третьей степени с целыми коэффициентами. Формула Кардано для приведенного кубического уравнения. Общие способы решения кубических уравнений.
практическая работа, добавлен 22.10.2019Анализ приемов нахождения решений дифференциальных уравнений через элементарные или специальные функции. Принцип сжатых отображений. Понятие метрического пространства. Решение задач методами последовательных приближений Пикара, Эйлера, Рунге-Кутта.
дипломная работа, добавлен 21.09.2016Характеристика полиномиальной асимптотики решений. Анализ нормальной системы обыкновенных дифференциальных уравнений. Проверка абсолютной сходимости интеграла с помощью функций пространства. Особенность стремления аргумента бесконечности к полиному.
статья, добавлен 03.11.2015Решение уравнений в школьной программе. Потребность в комплексных числах. Извлечение корней, понятие квадратных уравнений. Преобразование кубичных уравнений. Решение уравнений в радикалах и существование корней уравнений. Приближённое решение уравнений.
презентация, добавлен 06.12.2011Уравнения Навье-Стокса как система дифференциальных уравнений в частных производных, описывающих движение вязкой ньютоновской жидкости, знакомство с основными особенностями. Общая характеристика способов решения прикладных задач газовой динамики.
контрольная работа, добавлен 25.07.2013Решение обыкновенных дифференциальных уравнений с заданными условиями на границах интервала и в заданных точках. Метод конечных разностей. Геометрический смысл производной. Метод прогонки, реализующий прямой и обратный ход. Выравнивание системы в столбец.
лекция, добавлен 06.04.2014Решение однородных и неоднородных линейных систем. Существование фундаментальной матрицы и ее построение. Анализ методов вариации произвольных постоянных. Решение дифференциальных уравнений первого порядка. Элементы теории устойчивости, уравнение Пфаффа.
курс лекций, добавлен 11.10.2014Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".
автореферат, добавлен 12.05.2018Использование команды plot и fplot при построении графиков. Решение дифференциальных уравнений с использованием классических алгоритмов численных методов Эйлера и Рунге-Кутта четвертого порядка. Построение графика значений по методам дифференцирования.
курсовая работа, добавлен 06.04.2014Задачи Коши, нахождение решения дифференциального уравнения. Способы получения формулы Эйлера и способы повышения ее точности. Структурная схема системы управления. Построение решения дифференциального уравнения с использованием неявного метода Эйлера.
реферат, добавлен 16.06.2009Определение сущности квадратного уравнения и его видов. Характеристика различных способов решения квадратных уравнений: по формуле, с использованием теоремы Виета и номограммы. Ознакомление с основными свойствами коэффициентов квадратного уравнения.
контрольная работа, добавлен 17.12.2014Изучение эволюции уравнений и их решений. Теории вычислений Древнего Египта, способы решения квадратных уравнений в Древнем Вавилоне и арабских странах. Кубические уравнения Греции, формула Тартальи–Кардано. Методы решения уравнений высоких степеней.
курсовая работа, добавлен 22.05.2010Алгоритм построения системы ортогональных финитных функций для начальной задачи нелинейного пространственного уравнения вязких трансзвуковых течений. Система обыкновенных дифференциальных уравнений с диагональной матрицей как результат проектирования.
статья, добавлен 31.05.2013