Анализ эффективности генетических алгоритмов обучения нейронных сетей

Доказательство возможности аппроксимации непрерывных функций нейронными сетями в работах Колмогорова и Хехта Нильсена. Эффективность применения генетических алгоритмов к решению проблемы исследования таких сетей. Выбор операторов мутации и кроссовера.

Подобные документы

  • Знакомство со средствами, методами MATLAB. Характеристика типичной сети с прямой передачей сигнала. Моделирование нейронных сетей с помощью пакета Simulink. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме.

    методичка, добавлен 26.11.2015

  • Характеристика обучающих выборок, которые используются для обучения искусственных нейронных сетей. Сравнительный анализ значений медианы, полученных при проведении теста Краскела–Уоллиса для определения результатов обучения программных приложений.

    статья, добавлен 28.11.2016

  • Развитие интегрированных, гибридных и синергетических систем в современной информатике. Особенности алгоритма поиска гармонии (HS), его преимущества по сравнению с известными алгоритмами оптимизации. Сравнение комбинированных генетических алгоритмов.

    статья, добавлен 19.01.2018

  • Использование генетических алгоритмов для решения задач многокритериальной оптимизации. Операторы кроссинговера высших степеней и многородительское скрещивание. Применение генетических алгоритмов к проектированию вибраторных антенн, их характеристики.

    статья, добавлен 17.01.2018

  • Определение понятия и история создания генетических алгоритмов в решении оптимизационных задач. Анализ их конкурентоспособности при решении NP-трудных задач в сравнении с динамическим и линейным программированием. Схема работы и пример алгоритма.

    контрольная работа, добавлен 09.03.2014

  • Анализ существующих подходов к решению задач структурного синтеза в проектировании и логистике. Разработка новых генетических методов структурного синтеза проектных решений. Параметры, управление которыми повышает эффективность генетических алгоритмов.

    автореферат, добавлен 31.03.2018

  • Исследование особенностей применения эволюционных алгоритмов для настройки структуры и поиска весов связей искусственных нейронных сетей. Анализ вопросов эволюционного поиска топологии искусственной нейронной сети. Кодирование информации о весах связей.

    статья, добавлен 08.02.2013

  • Описание принципов работы технологии искусственных нейронных сетей. Алгоритмы построения обучения сетей, возможности снижения временных затрат, необходимых для такого обучения. Обобщенная схема нейрона. Схема разделения вектора весов по ИР-элементам.

    статья, добавлен 12.07.2021

  • Понятие и классификация нейронных сетей; их структура и принцип работы. Особенности применения нейронных сетей в телекоммуникационных системах. Методы решения задач маршрутизации. Принципы прогнозирования потоков данных на основе нечетно-нейронных сетей.

    дипломная работа, добавлен 26.05.2018

  • Реализация и применение методов покоординатного спуска, генетических алгоритмов и метода PSO. Выбор функции для оценки качества работы алгоритмов, реализующих методы оптимизации. Разработка программного обеспечения. Мерный вектор псевдослучайных чисел.

    курсовая работа, добавлен 13.01.2016

  • Решение стегоанализа с применением искусственных нейронных сетей. Описание методики стеганографического анализа изображений, которая состоит в синтезе сигнатурного и статистического алгоритмов. Методика распознавания скрытой информации в изображениях.

    статья, добавлен 16.05.2022

  • Преимущества применения нейронных сетей для распознавания объектов. Разработка алгоритма обработки образа с помощью нечеткой логики в системе технического зрения. Бинаризация и кодирование изображения при его преобразовании из цветного в оттенки серого.

    курсовая работа, добавлен 29.03.2021

  • Представление реализации системы нечеткого вывода с использованием генетических алгоритмов и экспертных знаний. Использование мнений экспертов, выраженных в виде правил. Возможность по выделению первичных данных из файла путем применения алгоритма.

    дипломная работа, добавлен 27.08.2016

  • Распределенные вычислительные сети как популярное направление развития информационных технологий. Разработка и анализ применения альтернативных подходов для решения NP-полной задачи распределения работ по исполнителям на основе генетических алгоритмов.

    статья, добавлен 06.05.2018

  • Общее описание нейронных сетей, их виды: однослойные и многослойные сети, персептрон, сети Хопфилда. Описание программных моделей и алгоритмов их обучения. Релаксация стимула, возникновение ложного образа и выработка прототипа, бистабильность восприятия.

    контрольная работа, добавлен 12.05.2015

  • Основные определения и понятия теории графов. Оптимизация решения задач с применением эволюционно-генетического подхода. Повышение технологичности и простоты конструктивного оформления элементов принципиальных схем на основе генетических алгоритмов.

    курсовая работа, добавлен 28.02.2018

  • Попытки копирования естественных процессов, происходящих в мире живых организмов. Адаптивные методы поиска, используемые для решения задач функциональной оптимизации. Реализация генетических алгоритмов и их применение. Пути решения задач оптимизации.

    курсовая работа, добавлен 18.06.2011

  • Общее описание нейронных сетей, однослойные и многослойные сети. Описание программных моделей и алгоритмов их обучения. Проблема функции "исключающее или". Исследование представляемости однослойной и двухслойной нейронной сети, релаксация стимула.

    курсовая работа, добавлен 26.06.2011

  • Кластеризация, решение задач коммивояжера с помощью генетических алгоритмов. Разбиение участников рейда на группы методом древовидной кластеризации, выявление центра сбора участников с помощью генетических алгоритмов. Проверка качества кластеризации.

    курсовая работа, добавлен 05.02.2014

  • Классификация алгоритмов кластеризации. Создание самоорганизующихся нейронных сетей, являющихся слоем или картой Кохонена, в MATLAB NNT. Создание сети, правило настройки смещений, реализация циклов обучения. Моделирование кластеризации данных.

    курсовая работа, добавлен 22.06.2011

  • Понятие искусственных нейронных сетей. Модель и архитектура технического нейрона. Обучение нейронных сетей. Основные функциональные возможности программ моделирования нейронных сетей. Однослойный и многослойный персептроны. Принцип работы сети Кохонена.

    дипломная работа, добавлен 19.11.2015

  • Изучение особенностей вычисления времени смешивания для операторов кроссовера, работающих с бинарными строками. Моделирование эволюции популяции, изменяющейся под действием только оператора кроссовера. Оценка времени смешивания для точечного оператора.

    статья, добавлен 17.01.2018

  • Аналитический обзор нечетко-нейронных сетей, анализ методов обучения. Анализ программных комплексов для разработки систем прогнозирования. Разработка структурной схемы на базе нечетко-нейронных сетей, осуществление обучения разработанной системы.

    дипломная работа, добавлен 14.12.2019

  • Исследование применения классификации и анализа объектов на основе нейронных сетей в задачах распознавания объектов в видеопотоке. Разработка и реализация алгоритма обучения нейронных сетей для реализации механизмов классификации объектов в видеопотоке.

    дипломная работа, добавлен 10.12.2019

  • Рассмотрено применение технологии искусственных нейронных сетей для реализации систем интеллектуального автоматического управления. Проведен сравнительный анализ различных схем нейроуправления. Алгоритмы и методы обучения искусственных нейронных сетей.

    статья, добавлен 02.04.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.