Теория вероятности
Классическое определение вероятности, вычисление относительной частоты, её свойства. Дискретные и непрерывные случайные величины, биноминальное распределение, задачи и функции дисперсии. Формулы Байеса и Бернулли, интегральная теорема Муавра-Лапласа.
Подобные документы
Способы определения вероятности осуществления того или иного события. Оценка математического ожидания и дисперсии некой величины, построение графика функции распределения. Оценка плотности вероятности. Расчет диаграммы рассеивания и линии регрессии.
контрольная работа, добавлен 18.04.2013Случайная величина как величина, которая в результате опыта принимает заранее неизвестное численное значение. Непрерывные и дискретные случайные величины. Суммарная вероятность. Расчет различных вероятностей и построение многоугольника распределения.
презентация, добавлен 01.11.2013Среднеквадратическое отклонение нормально распределенной случайной величины. Построение графиков интегральной и дифференциальной функции распределения. Порядок расчета математического ожидания и дисперсии. Определение вероятности возможных значений.
контрольная работа, добавлен 21.02.2015Определение вероятности того, что отклонение случайной величины будет не более среднеквадратического. Построение графика плотности распределения и функции распределения. Нахождение математического ожидания, дисперсии и среднеквадратического отклонения.
контрольная работа, добавлен 23.06.2015- 80. Теорема Бернулли
Доказательство математического выражения, позволяющего находить вероятность появления события при независимых испытаниях. Варианты применения теоремы Бернулли при решении практических задач. Расшифровка модуля вероятности отклонения частоты события.
краткое изложение, добавлен 12.04.2014 Изучение решения задач по математической статистике и теории вероятностей с помощью формулы Бейеса и Бернулли. Определение константы, вычисление математического ожидания и дисперсии величины X, а также расчет и построение графика функции распределения.
контрольная работа, добавлен 19.03.2014Определение и распределение дискретной случайной величины при множестве возможных значений. Свойства геометрической функции распределения. Формульное выражение математического ожидания. Графики функции и плотности распределения непрерывной величины.
методичка, добавлен 03.12.2013Полная группа несовместных гипотез. Вероятности этих гипотез до опыта. Условные вероятности каждой из них. Теорема об умножении. Формула Байеса. Вероятность вытащить на экзамене шпаргалку незаметно для преподавателя. Статистика запросов кредитов в банке.
презентация, добавлен 01.11.2013Определение вероятности попадания двумя стрелками в мишень. Расчет вероятности безотказной работы устройства. Рассмотрение биномиального закона распределения дискретной случайной величины. Определение функции распределения и построение ее графика.
контрольная работа, добавлен 31.10.2017История возникновения понятия вероятности и ее классическое определение. Построение вероятностного пространства и теорема о продолжении меры. Определение и свойства вероятностного пространства и вероятностной меры. Аксиомы существования вероятности.
курсовая работа, добавлен 08.10.2009Анализ вероятности события на примере процентного соотношения брака в выборке произведенных деталей. Построение ряда распределения, дисперсии, оценка вероятности попадания случайной величины в заданный интервал. Оценка среднего квадратического отклонения.
контрольная работа, добавлен 03.04.2013Решение задач на применение закона Кулона. Теория вероятности, интегральная и дифференциальная функции распределения, нахождение дисперсии и критических точек графика функции. Построение графиков интегральной и дифференциальной функций величины.
контрольная работа, добавлен 05.01.2012Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.
курс лекций, добавлен 08.01.2016Определение вероятности случая при заданном исходе. Вычисление возможности наступления всех последовательностей событий, приводящих к требуемому результату. Построение ряда распределения случайной величины. Расчет ее математического ожидания и дисперсии.
задача, добавлен 09.12.2015Формулы Бейеса и Бернулли. Понятие непрерывной случайной величины. Биноминальное распределение и распределение Пуассона. Числовые характеристики дискретных случайных величин. Условные законы распределения, линейная регрессия. Закон больших чисел.
курс лекций, добавлен 18.10.2017История развития теории вероятности. Понятия события, его главные свойства и порядок обозначения. Характеристика основных типов: невозможное и достоверное. Задачи, решаемые формулой Байеса, ее необходимые условия. Расчет полной вероятности события.
реферат, добавлен 21.05.2013Рассмотрение функции распределения (интегральной). Характеристика функции плотности вероятности. Определение особенностей функции распределения для дискретных случайных величин. Исследование моментов случайных величин. Обзор характеристических функций.
презентация, добавлен 29.09.2017Определение и проверка вероятности предельных теорем, а именно теоремы Бернулли и закона больших чисел Чебышева. Определение коэффициентов простой линейной регрессии, полученных в ходе проведенных испытаний, анализ и проверка статистических гипотез.
курсовая работа, добавлен 06.08.2013Нахождение оценки математического ожидания и дисперсии случайной величины и вероятности ее попадания в заданный интервал. Определение доверительных интервалов для математического ожидания и дисперсии, соответствующих заданной доверительной вероятности.
практическая работа, добавлен 16.10.2017Предмет и задачи теории вероятностей. Вероятности случайных событий, классический и геометрический способы их вычисления. Значения вероятности произвольного события. Гипотезы и независимые события. Последовательность независимых испытаний. Схема Бернулли.
курс лекций, добавлен 21.12.2011Порядок и принципы построения распределения вероятности занятия линий в пучке из V-линий в соответствии с распределениями Бернулли, Пуассона и Эрланга. Расчет математического ожидания числа занятых линий, их дисперсии и среднеквадратического отклонения.
задача, добавлен 10.12.2015Случайные события и их классификация, понятие о вероятности события. Изучение операций над спонтанными явлениями, вероятности их суммы и произведения. Повторные независимые испытания, формула Бернулли. Случайная величина и её числовые характеристики.
лекция, добавлен 25.01.2013Определение оценки математического ожидания и дисперсии случайной величины. Расчет доверительного интервала. Оценка вероятности попадания случайной величины в заданный интервал. Особенности построения гистограммы и эмпирической функции распределения.
контрольная работа, добавлен 18.10.2017Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.
контрольная работа, добавлен 27.11.2017Полная группа равновероятных и несовместных событий. Условные вероятности события. Интегральная теорема Лапласа. Сущность закона распределения дискретной случайной величины. Выборочное уравнение прямой регрессии. Гистограмма относительных частот.
контрольная работа, добавлен 28.03.2014