Применение локальных бинарных шаблонов в задаче распознавания эмоций
Применение локальных бинарных шаблонов (LBP) к задаче распознавания эмоций на лицах. преимущества и ограничения метода LBP в задаче распознавания эмоций. Основные этапы процесса распознавания эмоций, включая извлечение признаков и классификацию.
Подобные документы
Изучение необходимости в системах распознавания символов. Наиболее распространенные системы оптического распознавания символов: Abbyy FineReader, CuneiForm от Cognitive. Особенности интерфейса, достоинств и недостатков. Автоматический перевод текста.
реферат, добавлен 31.03.2012Создание сервиса, который будет давать оценку эмоционального состояния, говорящего при разговоре с оператором колл-центра, что поможет анализировать эффективность центра обработки звонков. Применение нейросетей для более качественного решения проблемы.
статья, добавлен 23.12.2024- 28. Применение алгоритмов кластеризации k-means и g-means в задачах распознавания воздушных объектов
Характеристика процесса распознавания воздушных объектов, который имеет ряд трудностей. Анализ использования кластеризации семействами алгоритмов k-means и g-means. Исследование работоспособности метода на примере информации о воздушных объектах.
статья, добавлен 30.04.2018 Описание программной оболочки, алгоритмов и процедур для распознавания ограниченной группы слов на основе скрытых моделей Маркова. Особенности распознавания в режиме реального времени, использование функции распределения вероятностей наблюдаемых событий.
статья, добавлен 28.11.2016Анализ библиотек оптического распознавания символов. Описание пользовательского сценария мобильного приложения. Модули сканирования и распознавания визитных карточек, отображения сохранённых контактов, настроек приложения. Дизайн интерфейса программы.
дипломная работа, добавлен 04.12.2019Изучение современных алгоритмов обнаружения и распознавания лиц на изображении для разработки приложения микро-сервиса для распознавания личности на основе фотографии лица с использованием алгоритмов машинного обучения. Описание процесса разработки.
дипломная работа, добавлен 04.12.2019Особенности реализации механизма распознавания номера банкноты в терминалах. Исследование особенностей алгоритма предобработки. Анализ области купюры, подготовленной для распознавания. Характеристика алгоритма по распознаванию номера банкноты в MatLab.
статья, добавлен 06.04.2016Теория распознавания образов. Цифровая обработка изображений и распознавания образов. Система визуального наблюдения. Применение алгоритма Виолы-Джонса. Методы определения и оценка оптического потока. Применение трекинга при помощи оптического потока.
курсовая работа, добавлен 11.11.2017Инновационная система кодировки лицевых экспрессий (FACS), разработанная П. Экманом и В. Фризеном, её возможности, преимущества и недостатки. Анализ разработки Академии наук Украины "Компьютерной системы психологической экспертизы мимики эмоций".
статья, добавлен 01.07.2018Особенности разработанных модулей системы распознавания образов, которые ответственны за формирование признаков и принятие решений при классификации. Признаки, полученные после ортогонального преобразования пространственного спектра видеоизображения.
статья, добавлен 29.06.2016Сущность понятий "распознавание", "универсальное множество", "образ", "решающее правило", "адаптация" и "обучение". Примеры задач распознавания образов. Перебор, анализ характеристик образа, использование искусственных нейронных сетей при распознавании.
контрольная работа, добавлен 20.12.2012Анализ способов блочного распознавания символов. Разработка метода распознавания инвентарных номеров железнодорожных подвижных единиц, основанного на комитетной нейроиммунной модели классификации. Обоснование преимуществ использования данного метода.
статья, добавлен 29.06.2017Специфические особенности графического интерфейса программного приложения "Сурдофон". Характеристика принципа работы системы распознавания жестового языка с помощью нескольких видеокамер. Анализ упрощенной архитектуры рекуррентной нейронной сети.
статья, добавлен 24.02.2019Характеристика методов компьютерной реализации геометрических мер близости, их применение для принятия решений в детерминированных системах распознавания. Использование формулы для вычисления расстояний в программировании, формирование массива в системе.
лабораторная работа, добавлен 02.12.2014Автоматизация передачи и обмена информацией. Поиск эффективного метода решения задач проектирования систем обработки речи. Обзор задач распознавания слитной речи. Методы решения задач распознавания слитной. Разработка системы распознавания речи.
отчет по практике, добавлен 30.03.2020Рассмотрение разделения подмножества сильносвязанных признаков при построении экстремальных алгоритмов распознавания. Построение распознающих операторов в условиях большой размерности признакового пространства. Расчет суммарной потенциальной энергии.
статья, добавлен 12.02.2019Применение мультимодальной информационной технологии, которая объединила две биометрические характеристики: голос и лицо, для распознавания объектов. Алгоритм фильтрации для снижения шума в спектрограмме голоса и отображения деталей изображения лица.
статья, добавлен 28.11.2016Паттерны фондовых индексов. Предсказание цен на фондовом рынке. Два базовых алгоритма распознавания паттернов: совпадение по правилу и совпадение по шаблону. Подход распознавания паттернов индексов фондовых бирж на основе искусственных нейронных сетей.
статья, добавлен 26.05.2017Рассмотрение и характеристика главных особенностей метода использования искусственных нейронных сетей. Ознакомление со схемой Персептрона. Исследование и анализ основных принципов распознавания образов, которые применяются в вычислительной технике.
контрольная работа, добавлен 26.05.2016Изучение наиболее распространенных систем автоматического распознавания речи с открытым исходным кодом. Сравнение структуры систем и языков программирования при реализации. Разработка рекомендаций по применению систем автоматического распознавания речи.
статья, добавлен 30.04.2018Автоматизация сбора, анализа и обработки данных в супермаркете. Разработка программы для распознавания лиц в живой очереди или изображений в реальном времени. Архитектура нейронной сети. Общий вид и назначение персептрона, оценка точности его работы.
статья, добавлен 25.02.2019Детерминистские и статистические методы распознавания образов. Построение решающих правил. Кластерный анализ. Отбор и их оценка информативных признаков. Правило ближайшего соседа. Параметрическое оценивание распределений. Критерий Неймана-Пирсона.
курс лекций, добавлен 01.10.2013Поиск эффективных путей решения задач классификации изображений и распознавания образов. Алгоритмы, принципы работы и преимущества многоагентных систем. Обеспечение автономности и взаимодействия интеллектуальных агентов, адаптация к изменяющимся условиям.
статья, добавлен 16.12.2024Описание основ построения нейронных сетей, включая сверточные нейросети. Рассматривается способ реализации механизма распознавания английских рукописных символов и цифр на основе полносвязной и свёрточной нейросетей с использованием фреймворка PyTorch.
статья, добавлен 06.09.2021Математические основы построения фрактальных кодов изображения в градациях серого, подходы к применению таких кодов в задаче распознавания образов. Возможность применения теоремы о сжимающих отображениях для измерения разности между изображениями.
статья, добавлен 27.05.2018