Метод Монте-Карло для вычисления определенного интеграла
Сущность метода Монте-Карло и моделирование случайных величин. Оценка погрешности метода Монте-Карло. Минимальные системные требования и описание программы для вычисления определённых интегралов методом Монте-Карло. Примера решения контрольной задачи.
Подобные документы
Изучение особенностей операций над множествами. Характеристика метода математической индукции. Рассмотрение аспектов применения бинома Ньютона. Анализ способ решения примером с комплексными числами и пределами. Методы вычисления производной и интеграла.
учебное пособие, добавлен 08.11.2013- 77. Симплекс-метод
Алгоритм симплексного метода решения задач линейного программирования. Пример решения задачи симплексным методом. Вычисление оценки разложений векторов условий по базису опорного решения. Рассмотрение причин использования двухфазного симплекс-метода.
лекция, добавлен 28.03.2020 Освоение решения типовой задачи оптимизации поисковым методом. Анализ и модификация метода решения реальной задачи оптимизации на основе конкретной научной публикации. Процесс исследования и минимизация функции. Блок-схема поискового метода Хука-Дживса.
курсовая работа, добавлен 20.11.2011Понятие и задача интегрирования. Свойства неопределённых интегралов как следствие соответствующих свойств для производных. Правило замены переменных в интеграле, вычисление неопределенных интегралов. Метод вычисления интегралов от рациональных функций.
лекция, добавлен 10.04.2016Анализ способа вычисления двойных интегралов путем сведения их к повторному интегралу. Ограничение функции сверху и снизу двумя непрерывными кривыми в области d. Алгоритм исчисления двойного интеграла в прямоугольных координатах и замена его переменных.
презентация, добавлен 17.09.2013Понятие и свойства неопределенного интеграла. Замена переменных. Интегрирование рациональных функций. Метод рационализации. Сущность метода интегрирования по частям. Таблица простейших неопределенных интегралов. Упрощение подынтегральной функции.
реферат, добавлен 17.01.2011Программирование процесса определения погрешности значений функций, приближенного решения систем уравнений, аппроксимации функций, вычисления интегралов, численного интегрирования дифференциальных уравнений, используя среду разработки Borland Delphi.
контрольная работа, добавлен 12.12.2012- 83. Интеграл Лебега
Математическое обоснование алгоритма вычисления интеграла Лебега и его основные свойства от ограниченной измеримой функции Предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега. Интеграл Лебега по множеству бесконечной меры.
реферат, добавлен 12.03.2010 Исследование метода приближенного вычисления предела максимального среднего для периодической функции, зависящей от времени и основных переменных, и дифференциального включения с постоянной правой частью. Техника опорных функций многозначных отображений.
статья, добавлен 31.05.2013Решение систем линейных уравнений методом Крамера. Матрицы и операции над векторами. Плоскости и прямая в пространстве. Введение в математический анализ. Дифференциальное исчисление функции. Методы вычисления неопределенного и определенного интеграла.
учебное пособие, добавлен 13.01.2014Пример нахождения неопределенного и определенного интегралов, использование основных формул. Вычисление несобственного интеграла, доказательство его расходимости. Приложения определенного интеграла. Изменение порядка интегрирования в двойном интеграле.
учебное пособие, добавлен 24.08.2012История применения графического метода для решения задач. Рассмотрение различных типов задач, методом решения которых может являться график. Основные приемы решения задач с помощью графического метода. Преимущества и недостатки графического метода.
реферат, добавлен 12.07.2020Вычисление площади плоских фигур при помощи интегралов. Нахождение объема тела, длины дуги, площади поверхности вращения. Определение статических моментов, центра тяжести плоских фигур, координат центра тяжести кривых с помощью определенного интеграла.
методичка, добавлен 14.12.2016Проекционный метод Галеркина, сущность метода коллокаций и наименьших квадратов, их преимущества и недостатки. Решение краевой задачи различными методами. Оценка погрешности применения данных методов относительно точного решения в конкретных точках.
дипломная работа, добавлен 07.11.2012Ознакомление с процессом приближенного решения с помощью степенных рядов. Рассмотрение численного решения методом Эйлера и Рунге-Кутты. Исследование порядка вычисления абсолютной и относительной погрешности. Изучение совместного графического решения.
контрольная работа, добавлен 15.01.2018Квадратурная формула Ньютона-Котеса, ее характеристика и частные случаи. Анализ квадратурной формулы Гаусса. Приближенное вычисление несобственных интегралов. Кубатурные формулы типа Симпсона как метод приближенного вычисления двойного интеграла.
лекция, добавлен 26.09.2017Метод Эйлера как простейший численный метод решения систем обыкновенных дифференциальных уравнений. Описание данного метода, дающего решение в виде таблицы приближенных значений искомой функции, его исправления и модификации. Оценка погрешности.
реферат, добавлен 27.10.2019Решение задачи, состоящей в определении максимального значения функции. Решение расширенной задачи симплекс-методом. Алгоритм метода искусственного базиса. Особые случаи применения симплекс-метода (Х.А. Таха). Правило выявления неограниченности решения.
лекция, добавлен 06.09.2017Процесс проведения математического исследования модели. Процесс программирования, расчет на ЭВМ, обработка результатов. Сущность задачи вычисления, ее основные особенности. Общая характеристика численных методов. Абсолютная и относительная погрешности.
курс лекций, добавлен 13.12.2013Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.
курсовая работа, добавлен 11.06.2014Понятие определенного, двойного и тройного интегралов. Характеристика теорем существования двойного и тройного интегралов. Сущность теоремы о среднем значении для двойного интеграла. Условия перехода пределов интегрирования к полярным координатам.
контрольная работа, добавлен 27.08.2013Вычисление площадей и объёмов с помощью двойных интегралов. Анализ сущности двойного интеграла в геометрии. Расчет интегральной суммы в криволинейном цилиндре. Площадь области, ограниченной замкнутой кривой. Нахождение определенного интеграла функции.
презентация, добавлен 17.09.2013Новый метод решения уравнения Пелля и связанных с ним диофантовых уравнений. Примеры применения метода и сравнение по эффективности с циклическим методом. Использование фиксированного алгоритма циклического метода. Увеличение числа шагов цикла.
статья, добавлен 22.11.2018Изучение истории возникновения основных понятий комбинаторики. Этапы формирования умений и навыков вычисления значений комбинаторных выражений по формулам. Подсчитывание вероятности случайных событий и получение законов распределения случайных величин.
статья, добавлен 21.01.2018- 100. Численные методы
Понятие метода итерации как способа численного решения математических задач. Его основные цели и порядок применения. Значение интегрированного метода трапеции, процесс оценки абсолютной погрешности. Решение системы линейных уравнений методом Гаусса.
контрольная работа, добавлен 20.05.2013