Матрицы и операции с ними
Понятие, свойства и характеристика основных видов матриц, а именно матрица размера mхn, квадратная, единичная, симметрическая и диагональная. Описание операций по составлению суммы и разности матриц, оценка их результатов. Сущность преобразования подобия.
Подобные документы
Проведение операции сложения над матрицами одного порядка, операции умножения матрицы на число и операции умножения матриц подходящего порядка. Рассмотрение аксиоматических исходных свойств операций. Характеристика приоритета операций над матрицами.
реферат, добавлен 09.11.2014Понятие матрицы. Основные операции над матрицами. Понятие определителя матрицы. Вычисление определителей матрицы. Способ вычисления определителя n-го порядка. Основные свойства определителей. Методика решения систем линейных уравнений методом Крамера.
реферат, добавлен 20.02.2012- 28. Блочные матрицы
Виды блочных матриц и операции над ними, их отличие от обычных. Сложение, умножение, кронекеровские произведение и сумма. Применение формулы Фробениуса. Алгоритм нахождения полуобратной матрицы. Нахождение обратной к матрице и информация о "возмущении".
курсовая работа, добавлен 18.05.2013 Понятие таблиц чисел, так называемых матриц, с помощью которых удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи. Определение линейного преобразования.
контрольная работа, добавлен 14.04.2011- 30. Матрицы Адамара
Характеристика матриц Адамара и некоторые их обобщения. Процесс вычисления наибольшего возможного числа положительных слагаемых при раскрытии определителя. Определение основных методов построения вещественных матриц Адамара, их специфика и применение.
статья, добавлен 26.05.2017 Общее понятие матрицы, ее разновидности. Определители n-го порядка и их основные свойства. Алгебраические дополнения и миноры. Способ получения обратной матрицы, ее транспонирование. Алгоритм нахождения ранга матрицы. Виды операций над матрицами.
контрольная работа, добавлен 21.05.2013Основные понятия матрицы: элементы, линейные матричные операции. Условие совместности системы линейных уравнений. Метод последовательного исключения переменных Гаусса — применение и модификации, достоинства, устойчивость. Неоптимальность метода Крамера.
презентация, добавлен 11.12.2013Анализ понятия матрицы: классификация и основные операции над ними. Определители квадратной матрицы и их свойства. Теоремы Лапласа и аннулирования. Обратная матрица: определение понятий, ее единственность, а также алгоритм ее построения и свойства.
курсовая работа, добавлен 21.04.2011Сущность линейных операций над векторами. Определение базиса и скалярного произведения. Декартова система координат. Уравнение плоскости и прямой в пространстве. Ранг матриц и операции с ними. Система и свойства решений линейных алгебраических уравнений.
курс лекций, добавлен 20.09.2011Определяются фундаментальные понятия матричного исчисления: линейно зависимые и независимые совокупности строк (столбцов) матрицы, ранг матрицы, сумма и произведение матриц, определитель матрицы, обратная матрица. Свойства определителей алгебры логики.
статья, добавлен 30.08.2020Изучение матриц как инструментов для записи различных математических преобразований. Характеристика метода решения систем линейных уравнений методом Гаусса. Исследование свойства сложения матриц одинакового размера и умножения на действительное число.
лекция, добавлен 15.11.2010Основные понятия теории множеств. Операции над ними. Свойства алгебраического тождества. Упорядоченные множества элементов. Структура и способы представления многомерных матриц. Правило получения обратной матрицы. Многомерно-матричное дифференцирование.
реферат, добавлен 16.01.2018Рассмотрение систем линейных уравнений. Общие определения, связанные с понятием матрицы. Алгоритмы составления обратной матрицы. Сложение, умножение матриц на число, обращение и транспонирование матрицы. Сочетательный и переместительный законы.
лекция, добавлен 18.04.2014- 39. Обратная матрица
Обратная матрица, её свойства, определитель, транспонирование. Характеристика способов нахождения обратной матрицы: точечные, итерационные. Метод Гаусса-Жордана, разложение, использование союзных матриц. Методы Шульца, выбор начального приближения.
реферат, добавлен 25.03.2016 Основные виды матриц. Обратная матрица, алгоритм нахождения, матричные уравнения. Основные теоремы о ранге матрицы. Минор, алгебраическое дополнение. Балансовая модель Леонтьева. Векторы на плоскости и в пространстве. Скалярное произведение векторов.
шпаргалка, добавлен 18.03.2013Элементарные преобразования многочленной матрицы. Наибольшие общие делители миноров. Деление матричных многочленов, обобщенная теорема Безу. Характеристический и минимальный многочлен матрицы. Представление значений функций многочленами, степенные ряды.
курсовая работа, добавлен 23.04.2011Действия со скалярными и векторными величинами. Уравнение прямой линии на плоскости и плоскости в пространстве. Изучение матриц и операции над ними, составление систем линейных уравнений. Понятие функции и предел числовой последовательности, производная.
курс лекций, добавлен 06.11.2009Невырожденные матрицы второго порядка. Теорема о разложении матрицы в линейную комбинацию ее сопряжённых корней. Условие идемпотентности квадратных матриц второго порядка. Нелинейные системы уравнений второго порядка, задаваемые матричными уравнениями.
научная работа, добавлен 04.05.2012Понятие и назначение определителей, основные положения их теории, методы вычисления и свойства. Минор и алгебраическое дополнение элемента определителя. Метод эффективного понижения порядка. Сущность матриц и порядок проведения операций над ними.
контрольная работа, добавлен 26.07.2009Виды матриц и операции над ними. Системы линейных алгебраических уравнений. Линейные операции над векторами. Аналитическая геометрия, уравнения плоскости. Кривые второго порядка: эллипс гипербола, парабола. Свойства предела функции, таблица производных.
курс лекций, добавлен 05.01.2016Вычисление определителя матрицы. Нахождение обратной матрицы, выполнение проверки. Решение системы линейных уравнений методом обратных матриц и методом Гаусса. Приведение расширенной матрицы к треугольному виду. Расчет координат нормального вектора.
контрольная работа, добавлен 11.12.2012Представление синусоидального тока комплексными величинами. Матричная алгебра, предмет и содержание ее исследований, современные тенденции и достижения. Понятие и характерные свойства матрицы размера. Вычисление обратных матриц различными способами.
реферат, добавлен 15.06.2013Определение и свойства матриц, операции над ними. Практическое значение правила Крамера. Суть метода Гаусса. Взаимное расположение прямых на плоскости. Проекции вектора на ось. Сущность инверсии в перестановке чисел. Скалярное произведение векторов.
шпаргалка, добавлен 23.01.2011Основные определения матричного исчисления, свойства собственных значений. Преобразование подобия матриц. Матрица вращения, особенности метода Гивенса. Характеристический многочлен матрицы. Метод бисекций решения полной проблемы собственных значений.
курсовая работа, добавлен 22.01.2016Изучение основных матриц графов и их теорем. Описание порядка построения матрицы по графическому рисунку графа и графов по заданной матрице. Характеристика метрических характеристик графов, связанных с матрицами. Нахождение путей графов по матрице.
курсовая работа, добавлен 13.09.2012