Вища математика для студентів І курсу лікувального факультету
Загальна характеристика використання методів математичного аналізу в медико-біологічній практиці. Розгляд функції та її похідних. Застосування диференціалу для наближених розрахунків. Основи інтегрального числення. Поняття про диференціальні рівняння.
Подобные документы
Причетність числа сім до Всесвіту й Космосу в метафізичному розумінні. Розгляд цифри у єгипетській і вавілонській філософії і астрономії. Виникнення шістдесяткової концепції числення у стародавніх вавілонян. Вживання вісімкової системи в теперішні часи.
реферат, добавлен 05.03.2015Властивості перетворення Лапласа. Теорема подібності (зміна масштабу аргументу оригіналу). Формули зображень елементарних функцій. Знаходження зображень для заданих оригіналів. Застосування операційного числення до розв’язування диференціальних рівнянь.
лекция, добавлен 30.04.2014Характеристика методу функції Гріна для розв’язування диференціального рівняння. Ознайомлення з процесом реалізації програми для методу функції Гріна середовищі СКМ "Mathematica". Аналіз особливостей побудови функції при постійному значенні потенціалу.
контрольная работа, добавлен 17.03.2015Головний аналіз диференціального рівняння, що містить аргумент, функцію та її похідну. Особливість методики розв’язку задачі Коші. Лінійні та однорідні завдання другого порядку зі сталими коефіцієнтами залежно від коренів характеристичної теореми.
методичка, добавлен 07.09.2014Знайомство з творчістю фінського філософа Гінтіка. Особливості Кантової теорії математичного методу. Розгляд парадигматичного характеру Евклідового методу для Кантової теорії математики. Способи розрізнення аналізу і синтезу як двох різних методів доказу.
статья, добавлен 21.07.2021Роль дисципліни "Вища математика" у процесі підготовки економістів. Роль математики як засобу вирішення прикладних завдань. Вирішення економічних питань у процесі дослідження вищої математики. Міжпредметні зв'язки економічних та математичних дисциплін.
реферат, добавлен 28.05.2018Основні найпростіші тригонометричні та лінійні рівняння. Зведення тригонометричного рівняння до алгебраїчного. Розкладання рівняння на множники. Рівність однойменних функцій. Системи тригонометричних рівнянь. Рішення, засновані на обмеженості функцій.
лекция, добавлен 26.01.2014Вирішення тригонометричних рівнянь у шкільному курсі математики: методичні особливості вивчення теми. Числові функції та їх властивості. Втрачанні та сторонні корені, перевірка знайдених розв’язків. Приклади розрахунків із складними нерівностями.
курсовая работа, добавлен 21.05.2009Поняття нормальної системи звичайних диференціальних рівнянь. Характеристика методу виключення, його використання. Розв’язання диференціального рівняння n-го порядку. Розрахунок лінійного однорідного рівняння другого порядку зі сталими коефіцієнтами.
задача, добавлен 15.03.2014Адаптивна апроксимація та ітераційні функції. Ітераційні процеси для класу задач, в яких виникають системи диференціальних рівнянь. Жорсткі та нелінійні диференціальні системи. Метод побудови ітераційної функції. Рівняння Ван Дер Поля, модель осцилятора.
статья, добавлен 11.01.2010Суть функціонального рівняння. Розв'язання функціонального рівняння способом заміни та утворенням системи лінійних рівнянь. Задачі про існування функції при певних умовах. Розв'язання нестандартних функціональних рівнянь. Суть графічного розв’язання.
курсовая работа, добавлен 02.01.2014Сутність екстремуму функціоналу: максимуму та мінімуму, його розрахунок для різних типів функціоналів. Визначення оптимального закону керування об’єктом методом варіаційного числення. Характеристика рівняння Ейлера. Екстремальні криві функціонала.
контрольная работа, добавлен 16.05.2017Знайомство з основними фізичними, хімічними і біологічними закономірностями процесу очищення стічних вод аерацією з активним мулом. Загальна характеристика теоретичних аспектів масопередачі кисню в аеротенках. Розгляд особливостей рівняння Щукарева.
статья, добавлен 26.01.2020Математичні властивості ступенів і логарифмів. Поняття ступеня з раціональним та ірраціональним показником. Логарифмічна функція, її властивості і графік, основні логарифмічні тотожності. Рішення диференціального рівняння радіоактивного розпаду.
реферат, добавлен 08.02.2016Аналіз існуючих методів моделювання, векторних і скалярних полів за позиційними і диференціальними властивостями, теоретичні основи узагальнено-тривекторного числення. Метод розв’язання задачі теплопровідності, теорії пружності в постановці Ламе.
автореферат, добавлен 02.08.2014Функція, її границя та неперервність. Область визначення функції та її геометричний зміст. Похідна та диференціали функцій багатьох змінних. Теорема рівності других мішаних похідних. Означення частинної похідної функції двох змінних по одній з них.
лекция, добавлен 08.08.2014Дослідження тригонометричних операцій над оберненими тригонометричними функціями. Методи визначення основних співвідношень між ними. Способи розв'язування тригонометричного рівняння або нерівності, у яких змінна входить під знак тригонометричної функції.
реферат, добавлен 16.12.2010Арифметичні операції над величинами, що мають інтервальну невизначеність. Інтервальні методи вирішення диференціальних рівнянь. Використання інтервальних методів. Реалізація інтервальних обчислень на ЕОМ. Проблеми використання інтервального аналізу.
реферат, добавлен 04.10.2011Викладення диференціального числення функцій однієї змінної: означення похідної; геометричний, механічний і економічний змісти похідної; доведення формул диференціювання; похідні вищих порядків; диференціал функції; теореми диференціального числення.
курс лекций, добавлен 30.04.2014Розробка нового підходу до спектральних задач спряження для рівняння Гельмгольца. Зведення задач спряження для рівняння Гельмгольца і їх абстрактних узагальнень до операторного жмутка. Застосування результатів і методів до існуючих і нових задач.
автореферат, добавлен 28.07.2014Показникова та логарифмічна функції, властивості. Поняття та властивості логарифмів. Перетворення логарифмічних виразів. Способи розв’язання логарифмічних і показникових рівнянь та їх систем. Показниково-степеневі рівняння. Вправи для розв’язування.
лекция, добавлен 24.01.2014Аналіз умов моделювання розв’язків загальної крайової задачі для лінійного неоднорідного гіперболічного рівняння другого порядку. Методика формульовання теореми існування розв’язку загальних крайових періодичних задач. Побудова наближених розв’язків.
статья, добавлен 29.07.2016Комп'ютерна алгебра і обчислювальний аналіз. Основні поняття диференціальної алгебри. Напівгрупи, автомати та формальні мови. Застосування методів Берисай де-Поя. Деференціальне рівняння Ріша. Система алгебраїчних рівнянь. Гратки та їх застосування.
курс лекций, добавлен 07.12.2011Встановлення умов сумісності операторного та нелінійного інтегрального рівнянь з обмеженнями. Встановлення достатніх умов збіжності, оцінки похибки. Аналіз сумісності диференціальних рівнянь. Застосування ітераційного та проекційно-ітеративного методів.
автореферат, добавлен 22.07.2014Дослідження ефективності застосування некласичних операційних й апроксимаційних методів для задач нецілого числення. Розробка апроксимаційно-операційних моделей динамічних систем нецілого порядку, з елементами запізнювання, крайових та варіаційних задач.
автореферат, добавлен 28.08.2014