Методические рекомендации по изучению функциональной линии в курсе алгебры 7–9 классов

Теоретические основы изучения функциональной линии в курсе алгебры основной школы. Понятие функции, способы её задания и исследования. Изображение замкнутых кривых на координатной плоскости. Методика изучения линейной, квадратной и кубической функции.

Подобные документы

  • Определение сущности функции, областей ее определение и значения. Особенности аналитического и табличного способов задания функций. Рассмотрение основных свойств и графического отражения постоянной, линейной, степенной, обратной, сложной функций.

    доклад, добавлен 23.05.2015

  • Определение поверхности первого порядка. Уравнение плоскости по точке и нормальному вектору. Математическое изображение ориентации объектов в пространстве: уравнение линии, взаимное расположение плоскостей и двух прямых, векторное равенство прямой.

    лекция, добавлен 29.09.2013

  • Нахождение косинуса угла между векторами при заданных условиях. Схематический чертеж перпендикулярных плоскостей. Приведение к каноническому виду уравнения линий второго порядка. Решение системы линейных уравнений матричным методом и методом Гаусса.

    контрольная работа, добавлен 11.06.2016

  • Основные понятия матрицы и ее определителей. Использование теорем замещения и аннулирования в доказательстве свойств определителей. Алгебраическое дополнение и минор элемента. Операции вычисления между элементами строк и столбцов квадратной матрицы.

    лекция, добавлен 29.09.2013

  • Определители второго, третьего и четвертого порядка, их свойства и методы вычисления. Операции над матрицами и их особенности. Понятие ранга матрицы, правило Крамера. Матричный метод решения систем, пределы и непрерывность функций. Дифференциал функции.

    учебное пособие, добавлен 28.08.2017

  • Элементы линейной алгебры, векторного анализа и аналитической геометрии. Определение значения матричного многочлена. Разложение элемента по рядам, сведение к треугольному виду. Матричное уравнение. Исследование системы на совместность методом Гаусса.

    учебное пособие, добавлен 12.05.2014

  • История возникновения науки арифметики, ее процесс развития. Открытие несоизмеримых отрезков греческими математиками из школы Пифагора. Проблематика определения понятия функции. Процесс изучения тригонометрических и логарифмических функций в школе.

    курсовая работа, добавлен 29.10.2013

  • Создание таблицы значений функции алгебры логики, способы нахождения всех существенных переменных. Построение полинома Жегалкина функции. Определение совершенной дизъюнктивной нормальной формы. Особенности создания связного ориентированного графа.

    контрольная работа, добавлен 27.08.2013

  • Определение взаимодействия законов логики и правил алгебры. Основные понятия и термины двух наук – логики и алгебры. Примеры логических и алгебраических выражений. Математический анализ и математическая логика выдающегося ученого Огастесе де Моргана.

    реферат, добавлен 23.12.2017

  • Возникновение графических изображений и чертежа, зарождение картографии. Роль современного графического языка в создании и оперировании пространственными образами объектов. Изображение пространственных форм на плоскости в курсе начертательной геометрии.

    реферат, добавлен 18.03.2015

  • Исследование формы, расположения и свойства линии на плоскости. Геометрический смысл уравнения прямой. Определение угла между двумя прямыми, условия их параллельности или перпендикулярности. Применение линейной зависимости в экономических задачах.

    презентация, добавлен 25.10.2016

  • Использование движения плоскости в начертательной геометрии для установления и исследования функциональной зависимости между различными величинами. Вращение плоскости и пространства, определение его центра и оси. Классификация видов и формул поворота.

    курсовая работа, добавлен 16.08.2010

  • Определение и свойства матриц, операции над ними. Практическое значение правила Крамера. Суть метода Гаусса. Взаимное расположение прямых на плоскости. Проекции вектора на ось. Сущность инверсии в перестановке чисел. Скалярное произведение векторов.

    шпаргалка, добавлен 23.01.2011

  • Рассмотрение основных свойств функций алгебры логики. Базис и основные законы булевых функций. Реализация сочетательного закона при использовании логической функции И для трех переменных. Конъюнктивная и дизъюнктивная формы закона поглощения переменных.

    лекция, добавлен 15.11.2017

  • Основные понятия алгебры логики. Операции булевой алгебры. Построение таблиц истинности и булевых выражений. Законы и соотношения булевой алгебры. Преобразование и упрощение булевых выражений методами непосредственных преобразований и карт Карно.

    курсовая работа, добавлен 26.06.2014

  • Матрицы и действия над ними. Системы линейных алгебраических уравнений и их решение. Компланарные, коллинеарные и ортогональные векторы. Скалярное произведение и его свойства. Уравнение кривых 2-го порядка. Производная функция. Правила дифференцирования.

    курс лекций, добавлен 29.05.2014

  • Кратчайшие линии на простейших поверхностях. Свойства плоских и пространственных кривых. Геодезические линии. Изопериметрическая задача. Задачи на равновесие системы упругих нитей. Принцип Ферма и его следствия. Задача о наименьшей поверхности вращения.

    учебное пособие, добавлен 11.11.2011

  • Характеристика кривой линии как множества точек пространства, координаты которых являются функциями одной переменной. Определение длины отрезка кривой. Изучение особенностей алгебраических, трансцендентных кривых. Анализ особенностей плоских кривых линий.

    реферат, добавлен 22.12.2015

  • Рассмотрение становления геометрической алгебры в Древней Греции, ее применения при решении уравнений, доказательстве алгебраических тождеств, при построении фигур. Влияние геометрической алгебры на разрешение математических проблем в арабских странах.

    статья, добавлен 26.04.2019

  • Ортогональное проецирование точки. Определение натуральной величины прямой линии. Следы плоскости. Позиционные и метрические задачи. Методы преобразования эпюра Монжа. Многогранники. Кривые поверхности. Касательные плоскости и аксонометрические проекции.

    учебное пособие, добавлен 06.05.2013

  • Исследование кривой второго порядка, принципы и правила ее построения по каноническому уравнению. Преобразование координат на плоскости. Преобразование координат на плоскости. Приведение к каноническому виду общего уравнения кривой 2-ого порядка.

    контрольная работа, добавлен 06.06.2014

  • Координаты на прямой и на плоскости. Простейшие задачи аналитической геометрии на плоскости. Линии первого порядка. Геометрические свойства линий второго порядка. Преобразование уравнений при изменении координат. Уравнение поверхности и уравнения линии.

    учебное пособие, добавлен 14.03.2014

  • Рассмотрение уравнения прямой, заданной угловым коэффициентом и в отрезках, основные отличия. Процесс нахождения расстояния от точки до прямой на плоскости. Сущность канонического и параметрического уравнений. Правила взаимного расположения двух прямых.

    лекция, добавлен 23.10.2013

  • Определение выхода при помощи текущего состояния входов как отличительная особенность комбинационных цифровых схем. Характеристика основных аксиом булевой алгебры. Исследование ключевых правил перемещения инверсии. Методика построения карты Карно.

    презентация, добавлен 13.10.2016

  • Закон, по которому группе упорядоченных действительных чисел ставится в соответствие одно число. График функции - поверхность в пространстве. Виды множеств точек. Понятия линии уровня, предела, непрерывности. Частные производные. Уравнение плоскости.

    презентация, добавлен 21.09.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.