Комплексные числа

Операции над комплексными числами. Проблема разрешимости любого квадратного уравнения как одна из причин введения комплексных чисел. Геометрическая интерпретация комплексных чисел, их тригонометрическая форма. Векторная интерпретация комплексных чисел.

Подобные документы

  • Натуральные числа, их формальное и аксиоматическое определение. История науки, изучающей чистые, формальные свойства натуральных чисел. Системы счисления, методы обозначения и теория чисел. Арифметические операции и расширение до целых чисел и дальше.

    реферат, добавлен 25.12.2014

  • Понятие комплексного числа. Алгебраическая форма записи комплексного числа. Рассмотрение тригонометрической и показательной формы. Основные действия над комплексными числами. Разложение многочлена на множители. Разложение правильных рациональных дробей.

    курс лекций, добавлен 27.08.2017

  • История комплексных У. Гамильтона, названные "кватернионами". Свойства этих чисел, и их примеры: операция сопряжения, тождество для двух квадратов, деление. Определение кватернионов и их сопряжение. Гиперкомплексные числа: коммутативные, ассоциативные.

    курсовая работа, добавлен 22.04.2011

  • Определение основных понятий числовых множеств. Граничная точка и граница множества, соединения и бином Ньютона, а также треугольник Паскаля. Характеристика комплексных чисел и операции над ними. Формула Муавра и извлечение корня из комплексного числа.

    реферат, добавлен 17.01.2011

  • Сравнение по ненулевому модулю третьего натурального числа. Характеристика главных особенностей деления числа на множество указанных чисел (дробных или целых). Сложение и умножение чисел. Отношение эквивалентности. Основные классы сравнения чисел.

    статья, добавлен 03.03.2018

  • Использование десятичной системы счисления как один из наиболее важных факторов, от которых зависят основные свойства редукции натуральных чисел. Специфические особенности доказательства операции суммарного редуцирования любого натурального числа.

    статья, добавлен 25.06.2018

  • Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.

    контрольная работа, добавлен 30.10.2010

  • Динамическая система и обыкновенное дифференциальное уравнение. Теорема существования и единственности обыкновенного дифференциального уравнения. Интегрирование уравнения в полных дифференциалах. Свойства комплексных чисел и основная теорема алгебры.

    практическая работа, добавлен 02.03.2012

  • Минуле і теперішнє комплексних чисел які знайшли чисельні застосування: в картографії, електротехніці, гідродинаміці, теоретичній фізиці. Спосіб Гамільтона введення комплексних чисел. Закони для комплексних чисел. Виконання ділення комплексних чисел.

    реферат, добавлен 10.01.2009

  • Особливість визначення поняття числа та видів числових множин. Досліджень чисел, які входять до множини цілих, раціональних та дійсних чисел. Розгляд різниці записів у вигляді нескінченного десяткового дробу раціонального та ірраціонального чисел.

    разработка урока, добавлен 08.06.2019

  • История становления понятия вещественного числа. Конструктивные способы определения вещественного числа. Системы аксиом вещественных чисел. Связь вещественных чисел с рациональными. Обобщение и теоретико-множественные свойства вещественных чисел.

    реферат, добавлен 25.02.2016

  • Определение понятия "комплексные числа", их алгебраическая форма, вычисления суммы и произведения, основные этапы изучения. Тригонометрическая форма комплексного числа, его геометрическая модель. Основные действия: сложение, вычитание, умножение, деление.

    презентация, добавлен 26.02.2015

  • Понятие блуждания, нахождение биномиальных коэффициентов. История развития фигурных чисел, характеристика их основных видов. Вычисление многоугольных чисел и проверка свойств фигурных чисел. Исследования Пьера Ферма, специфика пирамидальных чисел.

    курсовая работа, добавлен 14.06.2017

  • Определение эмпирических соотношений, которыми описываются простые числа и закономерности начала числовой оси натуральных чисел. Рассмотрение наличия больших интервалов числовой оси, не содержащих простые числа. Изучение интервалов с нечетными числами.

    статья, добавлен 30.03.2017

  • История появления проблем простых чисел. Асиптотический Закон рапределения простых чисел в натуральном ряду. Роль простых чисел в математике. "Тернарная" проблема Гольдбаха. Список проблем для Теории чисел, аналогичный списку Гильберта, его описание.

    статья, добавлен 24.08.2020

  • Загальні відомості про числа Фібоначчі. Означення та основні властивості чисел Фібоначчі. Метод математичної індукції і числа Фібоначчі. Взаємозв'язок чисел Фібоначчі з золотим перетином. Застосування чисел та золотої пропорції в різних галузях.

    курсовая работа, добавлен 12.11.2018

  • Исследование роли простых чисел в криптографии, генерации случайных чисел, навигации, имитационном моделировании. Определение закономерность распределения простых чисел в ряду натуральных чисел. Составление системы комбинаций арифметических прогрессий.

    статья, добавлен 30.03.2017

  • Алгебраїчна форма комплексного числа. Дії над комплексними числами, заданими в алгебраїчній формі. Геометрична інтерпретація комплексних чисел. Тригонометрична форма комплексного числа. Дії над комплексними числами, заданими в тригонометричній формі.

    лекция, добавлен 08.08.2014

  • Представление целых чисел с помощью письменных знаков. Характеристика аспектов биномиальной теоремы. Методика распределения простых чисел. Рассмотрение рациональных чисел как средства измерения. Теорема Лиувилля и конструирование трансцендентных чисел.

    книга, добавлен 25.11.2013

  • Значення простих чисел у математиці. Вивчення властивостей простих чисел Мерсенна та їх застосування на практиці. Опис стандартних процедур, функцій та інтерфейсу програми. Обчислення алгоритму побудови простих чисел Мерсенна на заданому проміжку.

    курсовая работа, добавлен 12.05.2016

  • Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.

    лекция, добавлен 22.12.2013

  • Система счисления как совокупность правил наименования и изображения чисел с помощью конечного набора символов, называемых цифрами. Развернутая форма записи чисел. Алгоритм перевода чисел из любой системы счисления в десятичную. Таблица сложения чисел.

    контрольная работа, добавлен 27.06.2012

  • Операции над множествами и их свойства. Система комплексных чисел. Многочлены с действительными коэффициентами и алгоритм Эвклида. Решение систем линейных уравнений матричным способом. Свойства аффинной и прямоугольной декартовой системы координат.

    курс лекций, добавлен 17.01.2014

  • Формула нахождения очень больших простых чисел. Алгоритмы разложение больших чисел на простые множители. Вычисление ряда чисел Фибоначчи. Числовой код треугольника Паскаля. Простые числа как основа защиты электронной коммерции и электронной почты.

    статья, добавлен 03.03.2018

  • Предложения решений в целых числах уравнений теории чисел. Доказательство отсутствия решений в целых числах уравнения теоремы Ферма. Предложение доказательства бесконечности регулярных простых чисел. Делимость числителей чисел. Простое число Мерсена.

    статья, добавлен 03.03.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.