Построение интерполяционных многочленов

Анализ линейно независимых функций, основные условия выполнения интерполяции для поиска многочлена, оценка возможной погрешности. Сущность методов Лагранжа и Ньютона, понятие интерполяционного полинома. Квадратическая зависимость аппроксимирующей функции.

Подобные документы

  • Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.

    методичка, добавлен 27.10.2013

  • Описание применения простого метода оценки ошибки интерполяции. Исследование свойства интерполированного сигнала. Пример данных, недостаточно описывающих сигнал. Использование и сущность метода оценки ошибки интерполяции для выбора метода интерполяции.

    статья, добавлен 07.11.2018

  • Доказательство теоремы Нетер, поиск аддитивных или асимптотически аддитивных интегралов движения в виде явных функций координат и скоростей при заданном виде функции Лагранжа без интеграции уравнений. Форма уравнений Лагранжа-Эйлера и ее инвариантность.

    курсовая работа, добавлен 10.11.2010

  • Создание таблицы значений функции алгебры логики, способы нахождения всех существенных переменных. Построение полинома Жегалкина функции. Определение совершенной дизъюнктивной нормальной формы. Особенности создания связного ориентированного графа.

    контрольная работа, добавлен 27.08.2013

  • Основные понятия и определения планирования и организации эксперимента. Метод наименьших квадратов и факторный эксперимент. Дисперсионный анализ и построение теоретической функции методом квадратов. Регрессионная зависимость эксперимента, её анализ.

    курсовая работа, добавлен 27.09.2011

  • Необходимые и достаточные условия существования максимума и минимума функции, выбор метода нахождения экстремумов и полное математическое обоснование. Задачи, связанные с нахождением условного экстремума. Геометрический смысл метода множителей Лагранжа.

    курсовая работа, добавлен 18.08.2009

  • Определение и экономический смысл производной. Построение касательной к графику функции. Сущность дифференцируемости и эластичности функции. Правила Лопиталя. Приближенные вычисления производной сложной и обратной функций. Таблица значений производных.

    реферат, добавлен 17.01.2011

  • Рассмотрение общей структуры методов поиска глобального оптимума. Характеристика классификации основных методов глобальной оптимизации по методологическому критерию. Особенность выбора и обоснования метода глобального поиска для прикладной задачи.

    статья, добавлен 07.08.2020

  • Преобразование целых выражений. Понятие многочлена как суммы одночленов. Правило умножения многочлена на многочлен. Формулы квадрата суммы и разности, разности квадратов, куба суммы и разности. Представление в виде многочлена, разложение его на множители.

    презентация, добавлен 19.12.2013

  • Составление линейной функции и решение системы из двух уравнений с двумя неизвестными. Формулы для нахождения коэффициентов по методу наименьших квадратов. Зависимость для показательной, линейной и квадратичной функций, их построение. Частные производные.

    контрольная работа, добавлен 29.03.2013

  • Методика определения многочлена Гегенбауэра. Специфические особенности использования неванлинновских характеристических уравнений для нахождения дельта-субгармонических функций. Алгоритм разложения в ряд Тейлора выражения с центром в нуле функции.

    статья, добавлен 30.10.2016

  • Понятие условного экстремума и способы его определения. Разработка алгоритма нахождения экстремума функции методом множителей Лагранжа. Применение данного метода при составлении плана выпуска изделий, обеспечивающего максимальную прибыль от их реализации.

    курсовая работа, добавлен 20.10.2012

  • Исследование функций при помощи производных и построение графиков. Необходимые и достаточные условия возрастания и убывания функции. Теорема и ее доказательство. Применение теоремы для убывающих функций. Подробное объяснение и решение задач.

    лекция, добавлен 05.03.2009

  • Примеры решения типовых задач и задачи для самостоятельного решения. Область определения функции. Выяснение четности (нечетности) функции. Построение графика функции. Пределы функций, раскрытие неопределенности. Преображение графиков элементарных функций.

    практическая работа, добавлен 20.12.2011

  • Целесообразность использования статистических методов в проблеме поиска оптимальных условий проведения эксперимента. Наука планирования и организации эксперимента. Обработка экспериментальных данных методом наименьших квадратов, регрессионная зависимость.

    дипломная работа, добавлен 10.02.2016

  • Понятие числовой функции. Определение числовой последовательности как числовой функции на множестве натуральных чисел. Исследование функций на четность и нечетность. Поиск нулей и промежутков, понятие метода интервалов. Промежутки возрастания функции.

    лекция, добавлен 27.04.2017

  • Решение задач на применение закона Кулона. Теория вероятности, интегральная и дифференциальная функции распределения, нахождение дисперсии и критических точек графика функции. Построение графиков интегральной и дифференциальной функций величины.

    контрольная работа, добавлен 05.01.2012

  • Рассмотрение основных особенностей решения задачи Коши методом Эйлера-Коши, варианты оценки погрешностей вычислений. Общая характеристика способов постройки графиков решения дифференциального уравнения и интерполяционного многочлена в одних осях.

    контрольная работа, добавлен 07.06.2013

  • Состав системы уравнений для определения коэффициентов многочленов наилучшего среднеквадратичного приближения. Таблица значений многочленов наилучшего среднеквадратичного приближения. Графики аппроксимируемой функции, заданной на дискретном множестве.

    лабораторная работа, добавлен 09.12.2019

  • Применение метода простых итераций и метода Ньютона для решения систем нелинейных уравнений. Интерполирование функций с помощью формулы Лагранжа. Способы вычисления однократных интегралов. Решение обыкновенных дифференциальных уравнений и систем.

    учебное пособие, добавлен 18.09.2012

  • Определение критериев выпуклости и вогнутости функций. Задачи безусловной оптимизации и необходимые условия оптимальности. Рассмотрение задачи с ограничениями-неравенствами. Рассмотрение сущности множителей Лагранжа и условий дополняющей нежесткости.

    лекция, добавлен 06.09.2017

  • Основные понятия приближённых вычислений. Учёт погрешности в арифметических действиях. Применение модифицированного метода Ньютона для вычисления систем нелинейных уравнений. Сущность методики Эйлера-Коши с последовательной итерационной обработкой.

    учебное пособие, добавлен 14.01.2017

  • Рассмотрение пространства функционалов для аппроксимации нелинейной системы кусочно-линейным способом, ортогональными и степенными полиномами. Определение ядер дискретного функционального полинома. Изучение математической постановки задачи интерполяции.

    реферат, добавлен 22.02.2012

  • Явный вид корневых многочленов для циклических многочленов третьей степени над полями характеристики 2. Обзор известных результатов по корневым многочленам над произвольными полями. Характеристика примеров циклических многочленов третьей степени.

    статья, добавлен 29.04.2017

  • Понятие определенного интеграла. Описание классов интегрируемых функций. Анализ свойств определенного интеграла и методов его вычисления. Примеры вычисления интеграла при помощи формулы Ньютона–Лейбница, замены переменной, интегрирования по частям.

    конспект урока, добавлен 18.04.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.