Использование теории множеств в различных отраслях знаний
Использование математики в задачах информационной безопасности. Понятие множества, его применение. Методы принятия решений в неопределенных условиях в основе теории множеств. Примеры применения теории множеств в отрасли программирования и в жизни.
Подобные документы
Рассмотрение теоремы Нагорного об удвоении слов в алфавите. Неформализуемость в лямбда-исчислении непредикативных конструкций. Изучение сущности теории множеств с самопринадлежностью. Математическое описание иерархии логических структур одного уровня.
статья, добавлен 26.04.2019Понятие зависимости между простыми числами в работах Лежандра и Гаусса. Методы суммирования упорядоченных множеств. Асимптотический анализ данной функции в трудах русского математика П. Чебышева. Ложности функции бесконечного множества по Литлвуду.
статья, добавлен 21.05.2016- 103. Числовые множества
Определение основных понятий числовых множеств. Граничная точка и граница множества, соединения и бином Ньютона, а также треугольник Паскаля. Характеристика комплексных чисел и операции над ними. Формула Муавра и извлечение корня из комплексного числа.
реферат, добавлен 17.01.2011 Теория игр - раздел математики, изучающий конфликтные ситуации на основе их математических моделей. Оптимальная стратегия для каждого игрока. Признаки классификации игры. Решение матричных игр в чистых и смешанных стратегиях. Основная теорема теории игр.
контрольная работа, добавлен 24.10.2014Рассмотрение элементов теории графов. Характеристика множеств и операций над ними. Основные законы комбинаторики. Основы построения матрицы смежности. Геометрическая реализация графов. Исследование ключевых особенностей логики высказываний и операций.
курс лекций, добавлен 01.04.2016Основные топологические понятия; аксиомы топологии и примеры некоторых соотношений в топологических пространствах. Булева алгебра и регулярные замкнутые множества: булево объединение и булево пересечение произвольного семейства элементов булевой алгебры.
курсовая работа, добавлен 07.07.2012Основы теории множеств. Логические операции над высказываниями. Равносильные преобразования формул. Способы задания булевой функции. Метод карт Карно. Двоичное сложение и полином Жегалкина. Кванторные операции над одноместными и двуместными предикатами.
методичка, добавлен 24.09.2019- 108. Теория графов
Краткий перечень основных понятий теории графов как раздела дискретной математики. Понятия смежности и инцидентности. Матрицы смежности и инцидентности, достижимости и связности. Маршруты и пути. Применение методов теории графов в прикладных задачах.
методичка, добавлен 24.03.2015 Понятие и сущность, математическое обоснование множеств, их классификация и типы, характеристика и свойства, основные способы задания. Общее описание и принципы реализации операций над множествами: объединение, пересечение, разность и дополнение.
контрольная работа, добавлен 17.06.2015- 110. Производные функций
Определения дифференцирования в линейных пространствах. Связь производных Фреше и Гато. Необходимое условие экстремума функции, формула конечных приращений и приложения. Понятия теории множеств, формула конечных приращений и следствие теоремы Лагранжа.
курсовая работа, добавлен 25.04.2014 Способы задания и операции над множествами. Основные тождества алгебры и проекция вектора. Свойства сложения и умножения (коммутативность, ассоциативность и дистрибутивность). Операции над соответствиями. Диагональные элементы матрицы и линейные операции.
контрольная работа, добавлен 13.05.2014Главные понятия алгебры множеств. Определение принципа двойственности и соответствия уравнений. Виды графов. Алгоритм поиска максимального потока в сети. Функции логарифмических частотных систем. Построение матричных уравнений и дискретных систем.
курс лекций, добавлен 06.12.2015Рассмотрение и анализ модели многокритериальной оптимизации по качественным критериям. Ознакомление с условием внешней устойчивости множества Парето оптимальных альтернатив. Характеристика замкнутого множества, как пересечения замкнутых множеств.
статья, добавлен 02.11.2018Использование новой математической структуры, которая является обобщением алгебры множеств и совмещает в себе некоторые свойства частично упорядоченных систем и логических исчислений. Особенность моделирования концепции естественных рассуждений.
статья, добавлен 16.01.2018Системы счисления, понятие множества. Операции над множествами. Графическое изображение множеств, диаграммы Эйлера-Венна. Таблицы истинности высказываний. Расчет бинарного отношения между множествами А и В. Частота появления значения случайной величины.
шпаргалка, добавлен 30.08.2017Вещественное число порядка как класс эквивалентности, если между элементами этих множеств можно установить взаимно однозначное соответствие. Построение вещественных чисел исходя из рациональных чисел согласно теории немецкого ученого Георга Кантора.
статья, добавлен 29.03.2019Определение математических понятий: множество, история теории множеств, их сравнение и операции над ними; функция и способы ее задания, группа как непустое множество, конъюнктивная нормальная форма, формальная логика и нормальный алгоритм Маркова.
контрольная работа, добавлен 19.06.2011Характеристика конфликта с принципом неопределенной расширяемости и с теоретико-множественным плюрализмом. Преимущества использования модального теоретико-множественного подхода. Адекватность решения трудностей с теоретико-множественным плюрализмом.
статья, добавлен 28.07.2022Разработана математическая модель здания на основании теории множеств. Определены параметры дефектов для каждого конструктивного элемента и их соответствующие предельно-допустимые значения, проведен анализ технического состояния конструктивного элемента.
статья, добавлен 20.11.2020- 120. Теория графов
История возникновения теории графов. Основные ее определения и теоремы. Применение положений данной теории в школьном курсе математики, в различных областях науки и техники. Объяснение теоретического материала на примере задач по естествознанию.
реферат, добавлен 01.03.2018 Описание аналога теоремы Какутани о неподвижных точках многозначного отображения в теории множеств с самопринадлежностью. Суть рекомбинации товаров при производстве новых товаров. Совпадение видов неподвижных точек с действительной структурой экономики.
статья, добавлен 26.04.2019Поле как множество, содержащее не менее двух элементов, на котором заданы две бинарные алгебраические операции – умножение и сложение. Варианты построения множества рациональных чисел. Элементарное понятие о дробном числе. Введение правил сравнения.
методичка, добавлен 17.09.2014Определение и примеры выпуклых множеств, гиперплоскости, нормального вектора. Рассмотрение операций, сохраняющих выпуклость. Понятие выпуклой функции. Установление необходимого и достаточного условий минимума гладких функций на выпуклых множествах.
лекция, добавлен 06.09.2017Множества и основные операции над множествами. Упорядоченные пары и прямое произведение множеств. Основные законы и формулы комбинаторики. Логика высказываний: основные понятия, формулы, логические операции, составные высказывания и законы логики.
реферат, добавлен 07.11.2015- 125. Теория игр
Изучение формальных моделей принятия оптимальных решений в условиях конфликта. Конкретизация объектов конфликта и связей между ними в теории игр. Рассмотрение примеров бескоалиционной игры. Антагонистические и позиционные игры в современной теории игр.
реферат, добавлен 22.06.2016