Основные теоремы исчисления вероятностей
Понятие независимых событий и условных вероятностей, их примеры. Характеристика основных свойств независимых событий. Независимость в совокупности. Теорема сложения и умножения для n событий. Формула полной вероятности и доказательство теоремы Байеса.
Подобные документы
Схема Бернулли, её определение и задачи, которые решаются по ней. Важное условие, без которого схема Бернулли теряет смысл. Возможные исходы при независимых испытаниях одинаковых вероятностей. Теорема и формула Бернулли, определение вероятностей событий.
контрольная работа, добавлен 04.01.2015Пространство элементарных событий. Случайное событие как результат опыта. Классическое и аксиоматическое определение его вероятности. Основные формулы комбинаторики. Независимые и зависимые явления. Априорные вероятности гипотез. Формула Байеса.
презентация, добавлен 29.09.2017Классическое и статистическое определением вероятности события. Теоремы сложения и умножения вероятностей. Задача о повторении испытаний, формула Бернулли. Локальная и интегральная теоремы Лапласа. Закон распределения дискретной случайной величины.
контрольная работа, добавлен 17.04.2015Проведение расчетов вероятностей сложных событий с использованием формулы классического определения вероятности. Применение формулы полной вероятности и формулы Бейеса. Нахождение в задаче числа исходов, благоприятствующих интересующему событию.
лабораторная работа, добавлен 06.10.2020Использование независимых событий в качестве результатов измерений, наблюдений, испытаний, опытов, анализа данных - основа вероятностно-статистических моделей. Установление критерия независимости событий - одна из важнейших задач теории вероятностей.
статья, добавлен 09.11.2020Особенность применения геометрического определения вероятности. Сущность появления одного из двух несовместимых данных. Характеристика теоремы о сложении возможностей совместных и несовместных событий. Главный анализ изучения умножения случайностей.
практическая работа, добавлен 27.11.2015Существенная характеристика алгебры и сигма-алгебры событий, встречающихся в теории вероятностей. Изучение косвенных методов вычисления возможностей. Свойства операций сложения и умножения явлений. Особенность изучения основных законов де Моргана.
контрольная работа, добавлен 25.11.2015Приведены формулы, устанавливающие связь между цугами и составными событиями бинарной последовательности. Доказана теорема: "Формула для цуг из составных событий", что переводит комбинаторику длинных последовательностей на физико-математический уровень.
статья, добавлен 11.07.2018Понятие о теории вероятностей и математической статистике как о науках. Случайный эксперимент и его элементарные исходы. Классификация случайных событий и действия над ними. Основные теоремы теории вероятностей. Первичная обработка статистических данных.
презентация, добавлен 24.06.2014Ознакомление с общими характеристиками теории вероятности. Применение теоремы Бернулли, формулы полной вероятности, центральной предельной теоремы. Сложение и умножение вероятностей. Нахождение оптимального решения, руководствуясь "правилом Лапласа".
контрольная работа, добавлен 17.11.2015Положения и теоремы теории вероятности в теории надежности. Теоремы сложения и умножения вероятностей. Теорема гипотез и формула Бейеса. Обработка статистических данных про надежность элементов. Критерий согласия при оценке статистических гипотез.
контрольная работа, добавлен 03.11.2012Анализ классического определения вероятности. Описание теорем сложения и умножения вероятностей. Формула полной вероятности и формула Байеса. Изучение дискретных случайных величин. Нормальный закон распределения. Варианты задач по теории вероятности.
методичка, добавлен 27.05.2016Решение задачи с помощью классического определения вероятности. Расчет вероятности события по формуле полиномиального распределения вероятностей. Использование формулы Пуассона для маловероятных событий, теорем умножения и сложения вероятностей.
контрольная работа, добавлен 06.12.2017Математические операции над случайными событиями. Решение задач комбинаторики. Основные методы вычисления вероятностей элементарных событий. Формулы Байеса и Пуассона. Независимые испытания Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.
лекция, добавлен 21.03.2018Рассмотрение расшифровки урновой схемы. Особенности определения геометрической вероятности. Исследование принципов применения формулы Бернулли в теории вероятности. Характеристика предельных значений вероятностей событий, интегральной теоремы Лапласа.
контрольная работа, добавлен 26.05.2015Центральная предельная теорема теории вероятностей как совокупность предложений, устанавливающих условия возникновения нормального закона распределения. Теорема Ляпунова и Лапласа как простейшие формы центральной предельной теоремы и их доказательство.
реферат, добавлен 18.03.2014Предмет и задачи теории вероятностей. Вероятности случайных событий, классический и геометрический способы их вычисления. Значения вероятности произвольного события. Гипотезы и независимые события. Последовательность независимых испытаний. Схема Бернулли.
курс лекций, добавлен 21.12.2011Определение зависимых и независимых событий в теории вероятности. Вероятность наступления события при условной вероятности. Рассмотрение явления вероятности суммы событий. Изучение формул вычисления вероятности произведения тех или иных событий.
презентация, добавлен 26.07.2015Понятие и примеры случайного события. Правила сложения и умножения в комбинаторике. Формулы вычисления вероятностей. Локальная и интегральная теоремы Муавра–Лапласа. Классы функций распределения. Непрерывные случайные величины. Закон больших чисел.
краткое изложение, добавлен 21.03.2018Рассмотрение основных типов соединений в комбинаторике. Теорема сложения вероятностей совместных событий. Рассмотрение функции распределения в теории вероятностей. Вариационные ряды и их характеристика. Свойства эмпирической функции распределения.
реферат, добавлен 18.04.2016Математический поиск вероятности события. Расчет двухмерных случайных величин. Теоремы сложения и умножения вероятностей. Закон распределения функции случайного аргумента. Изучение формулы полной вероятности. Математическое ожидание произведения величин.
контрольная работа, добавлен 29.11.2015Понятие события в теории вероятностей. Достоверные, невозможные и случайные события. Определение вероятности события. Примеры нахождения вероятности различных событий. Понятие противоположного события. Теорема о вероятности противоположного события.
лекция, добавлен 26.07.2015Пространство элементарных событий и операции над случайными событиями. Основные элементы комбинаторики. Характеристика непрерывных случайных величин. Применение формулы полной вероятности и формулы Байеса. Закон больших чисел. Плотность вероятности.
учебное пособие, добавлен 29.10.2013Применение формулы Байеса. Условная вероятность события. Закон распределения случайной величины. Условие полной вероятности событий. Математическое ожидание, дисперсия и среднеквадратическое отклонение распределения. Плотность распределения вероятностей.
контрольная работа, добавлен 04.11.2014Операции над событиями, элементы комбинаторики. Классический геометрический и статистический метод вычисления вероятностей. Формула полной вероятности и независимые испытания. Формула Байеса и Пуассона. Локальная и интегральная теорема Муавра-Лапласа.
дипломная работа, добавлен 27.09.2012