О делимости чисел применительно к теореме Ферма
Доказательство подлинности вспомогательной теоремы Ферма. Делимость чисел на основе сравнения по ненулевому рациональному модулю. Теорема Ферма для всех простых нечётных показателей переменных. Доказательство бесконечности регулярных простых чисел.
Подобные документы
- 101. Непрерывные дроби
История и сущность цепных дробей как математического выражения. Принципы разложения в непрерывную дробь. Приближение вещественных чисел к рациональным, особенности разработки солнечного календаря. Доказательство иррациональности чисел с помощью уравнений.
доклад, добавлен 06.12.2014 - 102. Комплексные числа
Польза мнимых чисел при решении кубических уравнений. Полное геометрическое истолкование комплексных чисел и действий над ними. Основные правила возведения в n–ю степень и извлечения корня n–й степени для комплексных чисел. Развитие теории чисел.
презентация, добавлен 05.10.2015 - 103. Числовий аналіз
Основна теорема арифметики. Подільність чисел на множині цілих чисел та його властивості. Застосування ланцюгових дробів. Канонічний розклад числа та діофантові рівняння. Системи лінійних конгруенцій, методи розв’язання. Китайська теорема про лишки.
шпаргалка, добавлен 07.06.2019 Закон сохранения количества чисел джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Изоморфные свойства рядов четных и нечетных чисел натурального ряда. Определение простоты произвольного целого числа и факторизация.
учебное пособие, добавлен 15.09.2012Биография Пифагора. Неалгебраические доказательства теоремы. Древнекитайское, древнеиндийское доказательство. Доказательство Евклида. Алгебраические доказательства теоремы. Первое и второе доказательство. Определение косинуса угла. Головоломка "Пифагор".
реферат, добавлен 30.01.2016Основные особенности алгоритмов выполнения линейных и нелинейных операций в системе обобщенных комплексных чисел. Изучение изоморфизма систем комплексных чисел и обобщенных комплексных чисел. Геометрическая интерпретация обобщенных комплексных чисел.
статья, добавлен 29.01.2019- 107. Пьер де Ферма
вникая в геометрические построения древних, Пьер де Ферма совершает открытие: для нахождения максимумов и минимумов площадей фигур не нужны сложные чертежи. Всегда можно составить и решить алгебраическое уравнение, корни которого определяют экстремум.
доклад, добавлен 19.11.2008 Концепция иррациональных чисел в античной математике. Принятие таких понятий как ноль, отрицательные числа, целые и дробные числа в средние века. Появление комплексных чисел в Новое время. Доказательство иррациональности числа Пи Ламбертом, Лежандром.
реферат, добавлен 08.02.2017Формулировка проблемы достижения условия непрерывности G и описание соответствующих уравнений для решения этой задачи. Функционалы "сдвиг кривой" и Квази-G1. Решение вариационных задач без ограничений в соответствии с теоремой Ферма, описание алгоритма.
статья, добавлен 21.06.2018История комплексных чисел. Особенности решения многих задач физики и техники при помощи комплексных чисел. Достоинство комплексного метода. Алгебраическая и тригонометрическая форма комплексного импеданса. Механические приложения комплексных чисел.
статья, добавлен 03.09.2011Выведены формулы для решений уравнения Пифагора, они отличаются от общеизвестных формул древних. Формулы могут быть использованы для доказательства большой теоремы Ферма, методом бесконечного спуска, для всех нечётных значений показателя степени n.
статья, добавлен 07.06.2008Определение и проверка вероятности предельных теорем, а именно теоремы Бернулли и закона больших чисел Чебышева. Определение коэффициентов простой линейной регрессии, полученных в ходе проведенных испытаний, анализ и проверка статистических гипотез.
курсовая работа, добавлен 06.08.2013Формирование современного понимания функциональной зависимости. Достаточные условия экстремума функции. Нахождение экстремума с помощью производной. Определение предела функции в теореме Коши. Эквивалентность различных определений предела функции.
реферат, добавлен 03.10.2012История возникновения счета и чисел. Число, как основное понятие математики. Исследование множеств чисел с применением кругов Эйлера. Множество натуральных чисел и их свойства. Дроби в Древнем Египте. Четыре действия арифметики. Десятичные дроби.
реферат, добавлен 21.03.2013Деление чисел с использованием теоремы о делении с остатком. Представление геометрической интерпретации комплексных чисел, определение их модулей. Применение диафантова анализа. Вычисление матриц и пределов. Нахождение производных заданных функций.
контрольная работа, добавлен 21.01.2015Приведены результаты эмпирических исследований составных чисел Мерсенна вида Mp=2p–1. Поставлена следующая задача – определить наименьшие простые делители составных чисел Мерсенна. Показаны примеры использования метода факторизации чисел Мерсенна.
статья, добавлен 26.01.2020Суть метода математической индукции в решении задач на делимость, суммирование рядов, доказательства неравенств, исчислениям в геометрии, в теории чисел и алгебре. Теоремы разбиения треугольников и карта пересечения контуров окружностей на плоскости.
реферат, добавлен 06.04.2009Способ обоснования существования актуальных бесконечно малых чисел, основанный на понятии двузначной меры. Аксиоматический подход к понятию расширенной числовой прямой. Арифметика бесконечно малых чисел. Основные теоремы дифференциального исчисления.
монография, добавлен 03.07.2014- 119. Алгебраические числа
Краткий исторический очерк, возникновение и развитие чисел. Поле алгебраических чисел, их суть и значение. Понятие числового поля, алгебраическое число. Рациональные приближения алгебраических чисел. Теорема Лиувиля, трансцендентные числа Лиувиля.
реферат, добавлен 08.06.2010 Определение эмпирических соотношений, которыми описываются простые числа и закономерности начала числовой оси натуральных чисел. Рассмотрение наличия больших интервалов числовой оси, не содержащих простые числа. Изучение интервалов с нечетными числами.
статья, добавлен 30.03.2017- 121. Системы счисления
Система счисления как совокупность правил наименования и изображения чисел с помощью конечного набора символов, называемых цифрами. Развернутая форма записи чисел. Алгоритм перевода чисел из любой системы счисления в десятичную. Таблица сложения чисел.
контрольная работа, добавлен 27.06.2012 Изучение особенностей применения основной теоремы теории делимости к циклическим подгруппам. Исследование аддитивной группы целых чисел. Определение сущности изоморфизма. Ознакомление с теоремой теории делимости. Анализ примеров циклических групп.
контрольная работа, добавлен 14.06.2015Генерирование последовательности равномерно распределенных случайных чисел, их характеристика и построение гистограммы. Расчёт среднеквадратического отклонения, математического ожидания и дисперсии полученных данных с использованием функций SciLab.
лабораторная работа, добавлен 15.03.2014Значення простих чисел у математиці. Вивчення властивостей простих чисел Мерсенна та їх застосування на практиці. Опис стандартних процедур, функцій та інтерфейсу програми. Обчислення алгоритму побудови простих чисел Мерсенна на заданому проміжку.
курсовая работа, добавлен 12.05.2016- 125. Признаки делимости
Анализ различных теорем и свойств признаков делимости. Изложение основных фактов, относящихся к признакам делимости. Общие признаки равноостаточности и делимости. Классификация признаков делимости. Примеры школьных задач на изучение данной темы.
курсовая работа, добавлен 08.03.2019