Об одном обобщении формулы золотого сечения

Моделирование вещественных параметров вычисления формулы золотого сечения, в случаях невозможности применения математической модели, удовлетворяющей описание прикладных задач. Исчисление поправочных коэффициентов в уравнении пропорции двух величин.

Подобные документы

  • Зависимость геометрических характеристик плит стеновых панелей от набора конструктивных элементов, расположенных внутри произвольно. Разработка математической модели определения площади и моментов инерции сечения композиционного древесного материала.

    статья, добавлен 14.09.2021

  • Рассмотрение подходов к изучению моделирования. Методы имитации случайных величин. Этапы построения математической модели. Проблема оценки внешней среды. Характеристика особенностей имитационного моделирования. Анализ аспектов генетических алгоритмов.

    реферат, добавлен 18.01.2014

  • Изучение основных понятий логики предикатов. Определение формулы логики предикатов. Кванторы и кванторные операции. Анализ особенностей применения логики предикатов к логико-математической практике. Аристотелева силлогистика и методы рассуждений.

    курсовая работа, добавлен 18.05.2017

  • Математические операции над случайными событиями. Решение задач комбинаторики. Основные методы вычисления вероятностей элементарных событий. Формулы Байеса и Пуассона. Независимые испытания Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.

    лекция, добавлен 21.03.2018

  • Использование метода прямоугольников, метода трапеций и метода парабол для вычисления определенных интегралов. Расчет и сравнение абсолютной и относительной ошибок приближенных методов. Формулы для вычисления относительной и абсолютной погрешностей.

    методичка, добавлен 27.08.2017

  • Примеры решения задач по высшей математике: поиск произведения матриц, построение графика отношений, поиск области определения и множество значений. Составление таблицы истинности логической формулы. Определение вероятности выпадения определенной карты.

    контрольная работа, добавлен 18.05.2014

  • Описание математической модели, представляющей собой описание какого-либо объекта или процесса, выполненное на математическом языке с помощью геометрических фигур, уравнений, соотношений. Метод моделирования на уроках математики, его компоненты.

    статья, добавлен 27.01.2021

  • Применение формулы Байеса для вычисления изменения априорного распределения при восприятии текстовой, речевой информации. Методика расчета апостериорной совместной плотности вероятности, полученной в результате акта чтения или воспроизведения речи.

    статья, добавлен 31.08.2018

  • Рассмотрение и анализ сущности популяционной динамики – одного из разделов математического моделирования. Определение коэффициентов колебательного режима системы. Исследование модели В. Вольтерра, как первого примера модели в математической экологии.

    статья, добавлен 31.07.2018

  • Разработка математической модели гидромеханической схемы методом прямой аналогии. Составление схемы гидромеханической системы. Составление системы дифференциальных уравнений по эквивалентной схеме. Определение основных параметров математической модели.

    курсовая работа, добавлен 11.11.2017

  • Означення та основна властивість пропорції. Рівнобедрений трикутник, властивості кутів. Ознаки подібності трикутників. Поняття терміну "золотий переріз". Відношення золотого перерізу. Зображення правильного п’ятикутника. Побудування золотого перерізу.

    презентация, добавлен 25.01.2015

  • Систематизация и объединение знаний по геометрии. Основные теоремы об описанной и вписанной окружности, их доказательства. Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности и решение с их помощью задач.

    реферат, добавлен 30.10.2010

  • Члены тригонометрических рядов. Свойство системы тригонометрических функций. Ряд Тейлора. Особенности ряда Фурье четной и нечетной функции. Рабочие формулы для разложения функции в ряд Фурье. Применение программы MatLab для вычисления коэффициентов ряда.

    контрольная работа, добавлен 23.04.2011

  • Событийное моделирование в решении задач физики, газодинамики и социометрии. Метод твердых сфер. Применение событийного моделирования для изучения наноструктур, процессов распространения эпидемий, самоорганизации с локальным уменьшением энтропии.

    учебное пособие, добавлен 27.09.2014

  • Математический поиск вероятности события. Расчет двухмерных случайных величин. Теоремы сложения и умножения вероятностей. Закон распределения функции случайного аргумента. Изучение формулы полной вероятности. Математическое ожидание произведения величин.

    контрольная работа, добавлен 29.11.2015

  • Построение математической модели управления и автоматизации технологических процессов в промышленности. Характеристика, структурная схема и свойства орграфов, использование формулы Мейсона для их преобразования. Определение передаточной функции контуров.

    лекция, добавлен 22.07.2015

  • Элементы дискретной математики. Сущность математической логики. Операции над множествами. Правила, формулы дифференцирования. Неопределенный интеграл, методы интегрирования. Основы теории вероятностей и математической статистики. Понятие и предел функции.

    учебное пособие, добавлен 03.07.2013

  • Изучение решения задач по математической статистике и теории вероятностей с помощью формулы Бейеса и Бернулли. Определение константы, вычисление математического ожидания и дисперсии величины X, а также расчет и построение графика функции распределения.

    контрольная работа, добавлен 19.03.2014

  • Дискретные и непрерывные виды случайных величин, законы распределения вероятностей их значений. Биноминальное распределение, формулы Бернулли и Пуассона. Понятие математического ожидания. Необходимые и достаточные условия независимости случайных величин.

    контрольная работа, добавлен 02.02.2010

  • Основные аспекты вычисления объема тела, образованного вращением фигуры, ограниченной линиями. Особенности поиска неопределенных интегралов. Основы применения формулы Ньютона-Лейбница. Расчет площади криволинейной трапеции, ограниченной линиями.

    контрольная работа, добавлен 09.03.2015

  • Особенности решения задач по начертательной геометрии. Взаимное положение точек, линий и плоскостей, способы их преобразований и построение проекций. Определение истинных величин и октант. Построение сечения многогранника плоскостью и его развертка.

    учебное пособие, добавлен 23.11.2011

  • Сущность метода Монте-Карло и моделирование случайных величин. Оценка погрешности метода Монте-Карло. Минимальные системные требования и описание программы для вычисления определённых интегралов методом Монте-Карло. Примера решения контрольной задачи.

    курсовая работа, добавлен 23.11.2015

  • Элементы, свойства и сечения конуса. Исследование вклада школы Платона в развитие геометрии. Великие книги о конических сечениях. Способ вычисления объема геометрической фигуры. Построение прямого конуса. Решение задач на нахождение элементов конуса.

    презентация, добавлен 28.11.2014

  • Понятие интеграла от функции двух, трех и большего числа переменных, основная методика их выражения в декартовых координатах. Двойные и тройные интегралы, их свойства и способы вычисления. Вычисление криволинейных интегралов с помощью формулы Грина.

    лекция, добавлен 29.09.2014

  • Интеграл Римана - важнейшее понятие математического анализа. Характеристика геометрического смысла данного выражения. Определение формулы Ньютона-Лейбница. Риманова сумма в пределе при измельчении разбиения - результат вычисления площади подграфика.

    контрольная работа, добавлен 10.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.