Выпуклые функции

Выпуклый анализ - самостоятельный раздел математики, связанный с классическим анализом и геометрией. Решение экстремальных задач в современной математической экономике. Простейшие и дифференциальные свойства выпуклых множеств. Доказательство теоремы.

Подобные документы

  • Особенности перечислимых и разрешимых множеств. Анализ конструкции Поста. Изучение основных вычислимых последовательностей функций. Характеристика неподвижной точки и отношения эквивалентности. Исследование главных аспектов теоремы Мучника-Фридберга.

    курс лекций, добавлен 28.12.2013

  • Рассмотрение понятия матрицы, её производных. Численные методы - раздел вычислительной математики, посвященный математическому описанию исследованию процессов численного решения задач линейной алгебры. Применение матрицы и ее алгебраические функции.

    реферат, добавлен 25.05.2017

  • Понятие автоматического доказательства теоремы, противоречивость отрицания формулы. Алгоритм построения вывода методом резолюций. Отличие теоремы резолюций от правил modus ponens и производных правил. Проблема доказательства в логике. Дизъюнкция литер.

    презентация, добавлен 17.04.2013

  • Равносильность уравнений с параметрами. Теоремы о равносильных преобразованиях уравнений, их доказательство и следствие. Характеристика равносильности неравенств с параметрами, их основные теоремы, определение из лемм, доказательства и следствия.

    лекция, добавлен 01.09.2017

  • Знакомств с краткой биографией Р. Декарта. Особенности создания аналитической геометрии. Рассмотрение методов решения алгебраических уравнений. Анализ доказательства существования Бога от Р. Декарта. Общая характеристика книги "Рассуждение о методе".

    курсовая работа, добавлен 03.05.2021

  • Биография П. Ферма и его вклад в развитие новых отраслей математического анализа, аналитической геометрии и теории вероятностей. История Большой теоремы Ферма. Доказательство леммы 1 (Жермен) и леммы 2 (вспомогательной). Доказательство теоремы Ферма.

    реферат, добавлен 30.10.2010

  • Методы решения алгебраических уравнений 3-й и 4-й степени с одним неизвестным. Доказательство теоремы Абеля. Понятие группы и ее свойства. Теорема алгебры комплексных чисел. Функции комплексного переменного. Римановы поверхности сложных выражений.

    книга, добавлен 28.12.2013

  • Кластерный анализ как новый раздел математики, в котором изучаются методы разбиения совокупности объектов, заданных конечными наборами признаков, на однородные группы. Знакомство с особенностями применения задач оптимизации в кластерном анализе.

    статья, добавлен 03.12.2020

  • История разработок и формирования теоремы Пифагора, причины ее популярности: простота – красота – значимость. Исследование некоторых классических доказательств теоремы Пифагора, известных из древних трактатов. Оценка важности и значимости данной теоремы.

    реферат, добавлен 10.11.2010

  • Индуктивный и дедуктивный методы рассуждений в основе математического исследования. Понятия полной и неполной индукции. Области применения, метод и принцип математической индукции. Решение примеров, доказательства равенств, неравенств, деления чисел.

    реферат, добавлен 30.10.2010

  • Сущность и история развития математической теории управляемых систем, сферы ее практического применения. Анализ принципиально новых задач, которые возникают перед теорией управления в связи с возможностями современной вычислительной техники, их решение.

    статья, добавлен 16.01.2018

  • Формулировка теоремы Ферма из теории алгебраических чисел. Доказательство данной теоремы методом "от противного": сначала предполагается выполнение основного равенства теоремы, а затем показывается его нарушение, приводящее к выполнению утверждения.

    статья, добавлен 27.09.2012

  • Понятие и сущность текстовой задачи. Вспомогательные модели, используемые в начальном обучении математики. Решение системы уравнений алгебраическим способом. Использование методов текстовых арифметических задач на уроках математики в начальных классах.

    методичка, добавлен 28.03.2017

  • Связь цепных дробей с геометрией выпуклых многоугольников. Корни квадратного уравнения с коэффициентами. Описание алгоритма "вытягивания носов". Две леммы геометрии чисел. Случай общих квадратичных иррациональностей. Изучение многомерных цепных дробей.

    учебное пособие, добавлен 28.12.2013

  • Описание свойства множества всех множеств – его несамоподобие, с использованием утверждения о количестве точек на прямой между двумя точками. Показано, что мощность множества всех множеств больше, чем мощность самоподобного множества; доказательства.

    дипломная работа, добавлен 26.04.2019

  • Аналитическое доказательство истинности заключения (теоремы) от противного. Содержательный (словесный) алгоритм по методу Вонга. Содержательный (словесный) алгоритм по методу пропозициональной резолюции. Блок-схемы и сравнительный анализ алгоритмов.

    курсовая работа, добавлен 19.06.2012

  • Определение и характерные свойства мероморфной функции, исследование ее асимптотики. Изучение и доказательство теоремы единственности, а также методика получения конструктивной процедуры решения обратной задачи для пучков дифференциальных операторов.

    статья, добавлен 22.02.2015

  • Основные аксиомы стереометрии и их простейшие следствия. Пример доказательства параллельности и перпендикулярности прямых, плоскостей. Декартовы координаты и векторы в пространстве. Использование теоремы Пифагора. Задачи по стереометрии и их решение.

    учебное пособие, добавлен 23.09.2012

  • Изучение методов линейного программирования. Особенности их использования при решении экономических, промышленных и организационных задач. Нахождение максимума и минимума линейной функции. Геометрическое истолкование задачи линейного программирования.

    презентация, добавлен 12.07.2015

  • Понятие множества как фундаментального неопределяемого понятия математики. Сущность пустого и универсального множеств. Способы их задания. Свойства операций над множествами, их сравнение. Диаграммы Эйлера как представление отношений между подмножествами.

    презентация, добавлен 19.09.2017

  • Вид дифференциального уравнения, разрешимого относительно старшей производной, его решение (функция у(х), которая обращает его в тождество). Формулировка теоремы Коши, утверждающей существование частного решения системы, ее геометрический смысл.

    презентация, добавлен 17.09.2013

  • Вычисление задач на действия с конечными множествами. Решение задач на условную вероятность и действия с ними. Плотность распределения и ее свойства. Построение гистограмм и полигонов частот по заданным условиям. Решение задач по схеме и формуле Бернулли.

    методичка, добавлен 07.12.2015

  • Основные способы задания множеств. Анализ рефлексивных, симметричных и транзитивных бинарных отношений. Характеристика исследования ориентированных графов. Главные законы, определяющие свойства логических операций. Изучение элементарных булевых функций.

    презентация, добавлен 06.09.2017

  • Понятие множества, операции и математические понятия в теории множеств. Суть и способы математического доказательства. Отношения эквивалентности и порядка на множестве. Теоретико-множественный подход в построении множества целых неотрицательных чисел.

    курс лекций, добавлен 06.08.2017

  • Основные понятия теории графов. Свойства маршрутов, цепей, циклов. Понятие гамильтонова графа. Доказательство теоремы Дирака. Постановка задачи о коммивояжере и описание известных способов ее решения. Практические приложения задачи. Метод ветвей и границ.

    курсовая работа, добавлен 06.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.