Исследование функций
Монотонность функции. Исследование стационарных точек. Локальный и глобальный экстремум. Выпуклость и перегибы графика функции. Интерполяция и аппроксимация функций. Интерполяционный полином Лагранжа. Формула Тейлора. Понятие об эмпирических формулах.
Подобные документы
Аппроксимация, при которой приближение строится на заданном дискретном множестве точек. Интерполяционный полином Лагранжа в виде разложения. Получение интерполяционного многочлена функции. Оценка погрешности остаточного члена при вычислении логарифма.
курсовая работа, добавлен 13.03.2014Аппроксимация данных заданной линейной зависимостью методом наименьших квадратов. Определение ее параметров. Нахождение точек экстремума функции с помощью метода множителей Лагранжа. Исследование функции на экстремум. Изменение диагонали прямоугольника.
контрольная работа, добавлен 19.05.2015Рассмотрение примеров дифференциального исчисления функций одного переменного. Исследование на монотонность, определение асимптот и экстремумов. Проведение полного исследования свойств и построение эскиза графика функции. Исследование функции Лагранжа.
контрольная работа, добавлен 18.12.2013- 4. Методика исследования элементарных функций на монотонность и выпуклость графика методом обобщения
Решение проблемы исследования элементарных функций на монотонность и выпуклость графика без использования производной. Реализация и возможности применения метода обобщения при нахождении промежутков монотонности рациональных и алгебраических функций.
статья, добавлен 07.12.2016 Локальный экстремум функции. Отыскание наибольшего и наименьшего значения непрерывной функции на отрезке. Расчет интервалов выпуклости графика кривой и точек перегиба функции. Определение интервалов возрастания и убывания функций с помощью производных.
лекция, добавлен 07.07.2015Роль интерполяции функций в вычислительной математике. Построение таблично заданных функций, которые совпадают со значениями исходной функции в некотором числе точек. Алгоритм построения интерполяции с помощью интерполяционного полинома Лагранжа.
контрольная работа, добавлен 03.06.2015Вычисление значения функции в точках, подозрительных на глобальный экстремум. Нахождение наклонной асимптоты, точек, в которых производная функции равна нулю. Определение промежутков выпуклости и точек перегиба функции. Построение эскиза графика функции.
контрольная работа, добавлен 26.04.2012Понятие экстремума, анализ теоремы о пределах функции. Знакомство с правилом нахождения минимальных и максимальных точек. Применение локальной формулы Тейлора. Характеристика экстремумов функций многих переменных. Основные признаки экстремума функции.
контрольная работа, добавлен 06.02.2012Интерполяционная формула Лагранжа и Ньютона. Разработка математического обеспечения. Аналитическое выражение функции f(x). Функциональная зависимость между величинами y и x, описывающая количественную сторону данного явления. Теория приближения функций.
контрольная работа, добавлен 13.01.2013Применение правила Лопиталя, пример нахождения асимптоты функции. Понятие точки глобального экстремума, формула её расчета. Вычисление локального экстремума и построение эскиза графика функции, её исследование на монотонность. Дифференциальное исчисление.
контрольная работа, добавлен 16.05.2014Характеристика признаков монотонности функций. Правила отыскания локального экстремума, определение точки максимума и минимума. Сущность теоремы Ферма. Отыскание значений непрерывной на отрезке функции. Направление выпуклости графика и точки перегиба.
лекция, добавлен 29.09.2013Поиск экстремума функции одной и нескольких переменных. Интерполяция функций интерполяционными полиномами, способы их вычисления и анализ сходимости (по классическому примеру Рунге). Определение ошибки интерполяции. Построение графиков полиномов Чебышева.
презентация, добавлен 21.09.2013Направления исследования функций многих переменных на безусловный экстремум, а также на условный экстремум. Методика определения координат точек функций, дифференцирование уравнений. Формирование, анализ и оценка соотношений математической связи.
методичка, добавлен 08.09.2015Определение экстремумов, точек перегиба и асимптот функции, использование команды polyroots. Исследование функции одной, двух переменных. Вычисление неопределенного постоянного множителя, Координаты стационарных точек. Применение функции CreateMesh.
контрольная работа, добавлен 10.04.2020Сущность и содержание аппроксимации функций, ее основные методы и сравнительная характеристика: интерполяция и среднеквадратичное приближение. Интерполяция как один из способов аппроксимации функций. Разновидности многочленов и способы интерполяции.
лекция, добавлен 14.05.2013Характеристика классов приближающих функций. Метод интерполяции Лагранжа. Метод получения аппроксимирующего значения функции без построения в явном виде полинома. Метод сплайн-аппроксимации и наименьших квадратов. Способы определения полиномы Чебышева.
контрольная работа, добавлен 03.06.2009Характеристика системы линейных неравенств, определяющих треугольник. Исследование функции на возрастание, убывание и экстремумы. Вычисление площадей фигуры, ограниченной графиками функций. Анализ функции на выпуклость, вогнутость, точки перегиба.
контрольная работа, добавлен 18.10.2017Определения дифференцирования в линейных пространствах. Связь производных Фреше и Гато. Необходимое условие экстремума функции, формула конечных приращений и приложения. Понятия теории множеств, формула конечных приращений и следствие теоремы Лагранжа.
курсовая работа, добавлен 25.04.2014Изучение четности и нечетности функции. Анализ нахождения наименьшего положительного периода функций. Определение промежутков знакопостоянства. Возрастание и убывание функций. Нахождение точек экстремума. Характеристика алгоритма исследования функции.
презентация, добавлен 22.03.2021Исследование и построение графика функции. Вычисление односторонних пределов и точек пересечения с осями координат. Расчет частных производных первого порядка. Изучение на экстремум функции двух переменных. Проведение поиска выпуклостей и точек перегиба.
контрольная работа, добавлен 22.10.2013Рассмотрение основных правил дифференцирования и осуществление дифференцирования сложной функции. Изучение правила исследования функции на монотонность. Определение точек локальных максимумов и минимумов. Расчет стационарных точек, попадающих в интервал.
презентация, добавлен 26.07.2015История зарождения и развития понятия о степенной функции. Основные свойства и особенности построения графиков степенных функций. Решение задач на построение графиков заданных функций. Исследование степенной функции на монотонность и ограниченность.
контрольная работа, добавлен 20.01.2018Анализ аппроксимации как процесса приближения функции f(x) к более простой функции. Анализ интерполяции как процесса нахождение промежуточных значений величины по имеющемуся дискретному набору известных значений. Определение интерполяционного полинома.
контрольная работа, добавлен 11.02.2018Постановка задачи аппроксимации и интерполяции функций. Общее понятие обобщенной степени и конечных разностей. Интерполяционные формулы Ньютона. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов для обработки результатов экспериментов.
контрольная работа, добавлен 27.09.2017Определение пределов последовательности и функции. Точки непрерывности и точки разрыва функции, производные и их приложения. Анализ примеров нахождения производных. Наибольшее и наименьшее значение функции на отрезке, ее исследование на экстремум.
контрольная работа, добавлен 23.01.2015