Задача коммивояжера

Определение последовательности объезда городов, которая обеспечит минимальное время переезда. Решение задачи о коммивояжере методом ветвей и границ. Неориентированный и ориентированный граф задачи коммивояжера. Теория графов и сетевого моделирования.

Подобные документы

  • Место задачи коммивояжера в теории комбинаторики с ее применением при разработке программного обеспечения. Постановка и математическая модель задачи коммивояжера. Особенности решения задачи коммивояжера методом ветвей и границ и венгерским методом.

    курсовая работа, добавлен 23.04.2014

  • Применение теории графов в геоинформационных системах. Использование простейших методов решения задачи коммивояжера. Постановка оптимизационной задачи и критерий оптимальности для задачи коммивояжера. Применение в логике математических методов.

    контрольная работа, добавлен 18.02.2015

  • Задача коммивояжера: понятие и сущность, основное содержание и общее описание, методы решения (жадный и деревянный метод, методы ветвей и границ, алгоритм Дейкстры) и их сравнительная характеристика. Сферы применения задачи коммивояжера на практике.

    курсовая работа, добавлен 19.03.2012

  • Понятие комбинаторной конфигурации. Способы решения задачи коммивояжера. Погрешность деревянного алгоритма. Метод ветвей и границ. Выбор алгоритма решения. Анализ методов решения задачи коммивояжера, определение области их эффективного действия.

    курсовая работа, добавлен 23.08.2014

  • Решения задачи коммивояжера. Сущность метода прямого перебора. Построение дерева ветвлений и нахождение длины путей. Решение дискретной задачи транспортного типа. Сущность метода "ветвей и границ". Приведение задачи максимизации к задаче минимизации.

    контрольная работа, добавлен 19.04.2013

  • Общее описание метода ветвей и границ организации полного перебора возможностей. Решение задачи о коммивояжере методом ветвей и границ: основная схема. Постановка основной задачи теории расписаний, случай одной машины. Задача Джонсона в теории расписаний.

    лекция, добавлен 26.09.2017

  • Основные понятия теории графов. Алгоритм построения эйлерового пути. Теория графов как область дискретной математики, особенностью которой является геометрический подход к изучению объектов. Задача коммивояжера как одна из задач теории комбинаторики.

    реферат, добавлен 18.03.2010

  • Основные понятия теории графов. Свойства маршрутов, цепей, циклов. Понятие гамильтонова графа. Доказательство теоремы Дирака. Постановка задачи о коммивояжере и описание известных способов ее решения. Практические приложения задачи. Метод ветвей и границ.

    курсовая работа, добавлен 06.07.2014

  • Методы решения задачи коммивояжера. Математическая модель задачи коммивояжера. Использование операции редукции для определения нижней границы множества. Вычисление ребра ветвления. Получение сокращенной матрицы, которая подлежит операции приведения.

    контрольная работа, добавлен 16.03.2014

  • Теория графов как область дискретной математики с геометрическим подходом к изучению объектов. Решение математических развлекательных задач и головоломок. Эйлеров путь графа. Краткие пути решения. Задача коммивояжера - одна из задач теории комбинаторики.

    реферат, добавлен 13.01.2012

  • Рассмотрение применения дискретной математики в информатике. Применение теории графов в экономических задачах. Определение жадного алгоритма, решение задачи о максимальной загруженности линий. Описание алгоритма Дейкстра. Решение задачи Коммивояжера.

    реферат, добавлен 07.10.2014

  • История возникновения теории графов и способы их представления в информатике. Определение понятия матрицы смежности и инцидентности. Маршрут как последовательность ребер, в которых каждые два соседних ребра имеют общую вершину. Гамильтонов и Эйлеров цикл.

    презентация, добавлен 28.02.2012

  • Теория и история возникновения графов. Задача о Кенигсбергских мостах и ее решение "одним росчерком" графа. Понятие эйлерова графа, его свойства. Значение и примеры применения графов для решения математических задач, головоломок, задач на смекалку.

    презентация, добавлен 18.03.2016

  • Суть задачи сводится к поиску оптимального (кратчайшего, быстрейшего или самого дешевого) пути, проходящего через промежуточный пункты по одному разу и возвращающегося в исходную точку. Дана матрица расстояний. Решение задачи с помощью алгоритма Литтла.

    статья, добавлен 03.03.2024

  • Логические задачи и методы их решения. Разработка алгоритма, позволяющего за минимальное количество вопросов определить, в какой коробочке лежит шарик определенного цвета. Теория графов в математике. Решение системы линейных алгебраических уравнений.

    презентация, добавлен 22.01.2014

  • Решение задачи целочисленного линейного программирования симплекс-методом ветвей и границ. Составление оптимального плана выпуска продукции предприятия. Определение необходимого количества изделий с целью получения максимальной прибыли от их реализации.

    задача, добавлен 28.03.2020

  • Основные понятия теории графов. Теорема о максимальном потоке и минимальном разрезе. Задача о минимальных затратах на построение сети. Модельный пример решения задачи о стоимости информационной сети с заданными пропускными способностями ветвей и узлов.

    контрольная работа, добавлен 08.06.2014

  • История возникновения теории графов. Основные понятия: ориентированный граф, петля, кратные ребра, гипердуги, подграфы. Способы представления графов в компьютере. Матрица смежности, инцидентность вершин и ребер, массивы дуг. Обзор задач теории графов.

    курсовая работа, добавлен 14.06.2011

  • Исследование инструментальных возможностей эвристики как вспомогательного средства решения нестандартных задач и разрешения проблемных ситуаций. Особенность решения задачи коммивояжера. Совершенствование человека с помощью эвристического познания.

    статья, добавлен 22.04.2019

  • Неориентированные и ориентированные графы, основные понятия и теории. Задача о максимальном потоке в сети. Приложения теоремы о потоках. Теория автоматов, операции над языками. Критерий распознаваемости и нераспознаваемости языка конечным автоматом.

    учебное пособие, добавлен 25.12.2011

  • Комбинаторика как выбор и расположение элементов некоторого множества в соответствии с заданными правилами. Классические комбинаторные задачи. Задача коммивояжера, имеющая ряд применений в исследовании операций при решении некоторых транспортных проблем.

    курсовая работа, добавлен 25.08.2016

  • Порядок и сроки выдачи заданий на курсовое проектирование по дисциплине "Теория конечных графов и ее приложения". Содержание курсового проекта. Пример решения практической задачи на примере составления графика обслуживания одиноких пенсионеров района.

    методичка, добавлен 03.10.2017

  • Диаграмма Эйлера-Венна для множества. Системы счисления с креном. Построение Эйлеровой цепи в неориентированном графе. Определение минимального остовного дерева в неориентированном нагруженном графе. Понятие булевой функции и методы ее представления.

    контрольная работа, добавлен 13.03.2017

  • Знакомство с понятием "граф" и его основными элементами. Составление графов по словесному описанию отношений между предметами и существами. Решение задач при помощи графов. Применение теории графов в анализе художественного текста и стилистике переводов.

    презентация, добавлен 15.10.2016

  • Основные понятия теории графов. Представления о планарном графе. Теорема Куратовского и другие характеризации планарности. Эйлеровы и гамильтоновы графы. Расчет количества израсходованного топлива за неделю каждым водителем по справочным данным задачи.

    курсовая работа, добавлен 30.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.