Ключ Давида (о решении второй математической проблемы Дэвида Гильберта)
Историческая реконструкция трех кризисов в основаниях математики в рамках философской школы интуиционизма. Фальсификация истории возникновения теории несоизмеримых отрезков, современной теории иррациональных чисел. Решение второй проблемы Д. Гильберта.
Подобные документы
Понятие Бернулли о законе больших чисел. Предельные теоремы теории вероятностей и объяснение природы устойчивости частоты появлений события. Неравенство Маркова в теории вероятностей. Сущность математического ожидания. Практическое применение закона.
реферат, добавлен 05.06.2012Описание сути интегральных уравнений третьего рода, а также характеристика направлений их исследований. Формулировка краевой задачи Гильберта. Решение интегрального уравнение третьего рода по теореме Нетера, доказательство его нормальной разрешимости.
статья, добавлен 18.05.2016Изучение истории развития математики - науки о величинах и количествах. Характеристика основных разделов математики: арифметики, элементарной алгебры, геометрии (планиметрии и стереометрии), теории элементарных функций и элементов анализа. Цифры майя.
реферат, добавлен 10.11.2011Теория вероятности как наука, которая изучает закономерности массовых случайных явлений. Знакомство с особенностями применения теории вероятности и математической статистики в экономике. Общая характеристика выборочного метода статистических исследований.
статья, добавлен 25.03.2019Ключевая роль неравенств в курсе математики средней школы. Решение неравенств с использованием свойств функции. Линейные, квадратичные, иррациональные, показательные и логарифмические неравенства. Некоторые лжепреобразования при решении неравенств.
дипломная работа, добавлен 09.11.2017В работе рассматривается вопрос о том, был ли в доевклидовой греческой математике кризис оснований, вызванный открытием несоизмеримости и/или апориями Зенона. Вывод оказывается отрицательным: нет никаких прямых исторических свидетельств такого кризиса.
статья, добавлен 29.05.2022Решение уравнений и систем в различных кольцах и полях как классическая задача алгебры и теории чисел. Алгоритмы решения полиномиальных уравнений и систем в полях алгебраических чисел, основанные на лемме о подъеме решения полиномиального сравнения.
статья, добавлен 18.01.2021Ферма и Паскаль - основатели математической теории вероятностей. Изобретение Паскалем арифметической машины. Введение Гюйгенсом понятия математического ожидания. Применение теории вероятностей в различных областях. Зарождение "статистической физики".
статья, добавлен 25.07.2018- 84. Теория множеств
Применение теории множеств в различных разделах математики. Кардинальные числа и появление теории меры. Сравнительная количественная оценка множеств. Определение понятий длины, площади и объема в геометрии фигур. Развитие теории интеграла и рядов Фурье.
контрольная работа, добавлен 17.06.2014 Метод математической индукции в решении задач на делимость. Применение метода математической индукции к суммированию рядов и доказательству неравенств. Решение геометрических задач на вычисление. Роль индуктивных выводов в экспериментальных науках.
курсовая работа, добавлен 13.10.2017История возникновения и развития математики в Древнем Египте, её использование при расчетах в строительных работах, сборе налогов, разделе имущества, измерении площадей полей. Философские проблемы математики, направления обоснования науки XX века.
реферат, добавлен 02.03.2015Использование математики в задачах информационной безопасности. Понятие множества, его применение. Методы принятия решений в неопределенных условиях в основе теории множеств. Примеры применения теории множеств в отрасли программирования и в жизни.
контрольная работа, добавлен 21.09.2017- 88. Выпуклые функции
Выпуклый анализ - самостоятельный раздел математики, связанный с классическим анализом и геометрией. Решение экстремальных задач в современной математической экономике. Простейшие и дифференциальные свойства выпуклых множеств. Доказательство теоремы.
методичка, добавлен 08.09.2015 Рассмотрение применения дискретной математики в информатике. Применение теории графов в экономических задачах. Определение жадного алгоритма, решение задачи о максимальной загруженности линий. Описание алгоритма Дейкстра. Решение задачи Коммивояжера.
реферат, добавлен 07.10.2014Розгляд основних прикладів застосування чисел Фібоначчі в геометрії і демонстрації використання формули Біне на факультативних та гурткових заняттях з математики. Оцінка характеристики чисел Фібоначчі та золотої пропорції як "діамантів" математики.
статья, добавлен 14.07.2016Решение уравнений высших степеней. Правила действий над мнимыми и комплексными числами. невозможность алгоритма общих уравнений Формула для нахождения корней. Различные методы решения алгебраических уравнений второй, третьей и четвертой степени.
статья, добавлен 29.04.2021Основные понятия, теоремы и методы теории вероятностей и математической статистики. Общее описание случайных процессов. Исследование типовых примеров и упражнений. Сущность и элементы корреляционного анализа. Этапы проверки статистических гипотез.
учебное пособие, добавлен 22.06.2014Роль полиномиальных систем в общей качественной теории автономных систем двух дифференциальных уравнений. Элементарное доказательство теоремы Берлинского А.Н. о числе особых точек второй группы системы. Исследование на ацикличность квадратичной системы.
статья, добавлен 05.07.2013Составные части графа. Использование теории графов при решении задач в экономике. Алгоритмы, предназначенные для выполнения задачи оптимизации. Понятие "жадный алгоритм", его свойства. Применение формул метода Дейкстры для решения экономических задач.
статья, добавлен 20.04.2019Вторая вертикаль квантификации как главный отличительный признак прироста "ступенек" от "лестницы Римана". Квантификация простых чисел переводом их из десятичной в двоичную систему счисления. Заполнение второй вертикали нетривиальными нулями и единицами.
статья, добавлен 26.06.2018Ценность теории вероятностей для общего образования. Краткая историческая справка появления азартных игр, применение теории в них. Сущность закона Бернулли. Художественная правда и вероятность сложного события. Краткая характеристика теории рекламы.
доклад, добавлен 21.02.2013Индуктивный и дедуктивный методы рассуждений в основе математического исследования. Понятия полной и неполной индукции. Области применения, метод и принцип математической индукции. Решение примеров, доказательства равенств, неравенств, деления чисел.
реферат, добавлен 30.10.2010Описано свойство последователей, следующих за натуральным рядом (первых бесконечных последователей типа PN), показано, что эти последователи и их всевозможные взаимные степени – счётны. Указано на приложение этого свойства к основаниям теории меры.
статья, добавлен 26.04.2019Исследование и характеристика процесса становления теоретико-числового метода в приближенном анализе, как раздела теории чисел. Ознакомление с деятельностью Добровольского - представителя Тульской теоретико-числовой школы. Определение индекса Хирша.
статья, добавлен 22.01.2017Идея построения теории меры для вычисления площади плоской фигуры. Особенности и примеры вычисления жордановой меры множеств. Определение меры ограниченного множества, составленного из точек прямой, с точки зрения меры Лебега. Проблемы теории меры.
контрольная работа, добавлен 15.04.2017