Пространственные фигуры. Правильные многогранники
Определение многогранников, их примеры в архитектуре (египетская пирамида), искусстве, животном мире. Их типы: тетраэдр, гексаэдр, октаэдр, икосаэдр, додекаэдр. Количество граней, ребер и вершин в данных фигурах. История правильных многогранников.
Подобные документы
Построение правильных пирамид и призм. Характеристика сечения прямоугольной трубы. Пересечение пирамиды линией и призмой. Последовательность построения 2-х многогранников. Построение сечения и развертки цилиндра, конуса и его развертки, шара и тора.
лекция, добавлен 26.09.2017Формирование у обучающихся навыков решения задач по геометрии на построение сечений. Развитие у учащихся пространственного воображения, графической культуры. Суть комбинированного метода построения сечений многогранников, пирамиды и параллелепипеда.
разработка урока, добавлен 25.09.2013Основы возникновения названий правильных многогранников. Исследование их роли в гармоничном устройстве мира И. Кеплера. Особенности построения ромбододекаэдра. Закономерность расположения цивилизаций Древнего мира относительно полюсов и экватора планеты.
реферат, добавлен 23.04.2015Рассмотрение свойств перпендикуляра, проведенного из вершины пирамиды к плоскости основания. Изучение особенностей построения треугольной, четырёхугольной и шестиугольной пирамиды. Изучение свойств боковых ребер и боковых граней правильной пирамиды.
презентация, добавлен 04.05.2015Параллельность и перпендикулярность прямых и плоскостей. Свойства многогранников, их основные виды. Нахождение площади призмы, параллелепипеда, пирамиды, трапеции и ромба, их высоты и сторон, боковых ребер и граней. Векторы в пространстве, их сложение.
учебное пособие, добавлен 01.04.2013Основные понятия правильной фигуры, их свойства, периметр, а также площадь геометрической фигуры. Основные виды правильных фигур (шестиугольник, треугольник, квадрат, пятиугольник), понятие их равенства и свойств. Задачи для урока по математике.
лекция, добавлен 14.08.2014Понятие и особенности строения многогранника как тела, граница которого является объединением конечного числа многоугольников. Отражение данных геометрических форм в архитектуре, биологии, живописи. Многогранники в архитектуре современной Москвы.
презентация, добавлен 13.04.2014Определение понятия секущей плоскости многогранника. Задания на построение сечения тетраэдра, пирамиды и многогранника плоскостью, заданной тремя точками. Сущность аксиоматического метода. Проверка правильности построения сечений многогранников.
презентация, добавлен 06.10.2011Из истории начертательной геометрии, требования к простейшим изображениям и их построение. Характеристика центрального проецирования как наиболее общего случая получения проекций. Суть параллельного проецирования. Пересечение многогранников плоскостью.
реферат, добавлен 06.10.2010- 35. Платоновы тела
Определение понятия правильного многогранника или платонового тела — выпуклого многогранника с максимально возможной симметрией. Ознакомление с символами Шлефли для правильных многогранников. Рассмотрение и характеристика геометрических свойств.
реферат, добавлен 18.05.2022 Сущность понятия "симметрия". Центр, плоскость симметрии фигуры. Церковь Покрова Богородицы на Нерли как пример симметрии в искусстве. Кижи, церковь Преображения. Ехвастия, мозайка апсиды собора Св. Софии в Киеве. Микеланджело, гробница Джулиано Медичи.
презентация, добавлен 17.10.2013Изучение вопроса о разработке задач по теме "Многогранники" в отечественной школе. Анализ наиболее известных учебников по геометрии под редакциями Л.С. Атанасяна и А.В. Погорелова. Исследование практики сдачи Единого Государственного Экзамена в России.
статья, добавлен 13.11.2014Многогранник как тело, поверхность которого состоит из конечного числа плоских многоугольников, его основные свойства. Наука стереометрия - раздел геометрии, изучающий свойства фигур в пространстве. Описание видов призмы, параллелепипеда, пирамиды.
презентация, добавлен 26.10.2014Определение понятия симметрии и ее виды. Окружность и параллелограмм как простейшие фигуры, обладающие центральной симметрией. Примеры фигур, не имеющих центра симметрии (треугольник). Описание ее проявления в искусстве, архитектуре, технике и быту.
презентация, добавлен 22.12.2014Рассмотрение правил построения линии сечения поверхности плоскостью. Раскрытие понятия развертки поверхности. Приведение общего принципа построения точек пересечения прямой с поверхностью. Построение развертки пирамидальных и призматических поверхностей.
лекция, добавлен 24.07.2014Симметрия геометрических фигур и группы движений плоскости. Умножение движений, имеющих общую неподвижную точку. Симметрия многочленов от двух переменных. Квадратурные формулы для окружности. Многочлены, обладающие симметрией правильных многогранников.
методичка, добавлен 13.01.2014Проецирование прямой на плоскость. Прямые частного положения. Использование конкурирующих точек. Определение видимости ребер пирамиды, натуральной величины отрезка и фигуры. Способы преобразования чертежа. Сущность метода плоскопараллельного переноса.
презентация, добавлен 09.03.2015- 43. Теория графов
Исследование математической теории о совокупности непустого множества вершин и ребер. Анализ кратности неориентированных и ориентированных дуг. Характеристика понятия эквивалентности при множестве вершин. Обоснование гомеоморфного подразбиения дуги.
лекция, добавлен 18.10.2013 Роль геометрических фигур в жизни человека. Использование их в строительстве, математике, науке и технике. Все геометрические фигуры имеют свои образы в окружающем мире. Объемные геометрические фигуры, их определение. Возникновение термина "Геометрия".
презентация, добавлен 11.05.2023Основы классической теории сводимости задач и геометрического подхода к изучению их сложности. Понятие конусного и многогранного разбиения, афинной сводимости задач комбинаторной оптимизации. Примеры труднорешаемых и полиномиально разрешимых задач.
диссертация, добавлен 10.01.2012История происхождения фрактал как сложной геометрической фигуры, обладающей свойством подобия. Классические примеры геометрических фракталов. Использование двумерные стохастические фракталы при моделировании рельефа местности и поверхности моря.
реферат, добавлен 03.05.2022Геометрическое построение "золотого сечения". Построение Евклидом правильных 5- и 10-угольников. Интерес к "золотому сечению" среди ученых и художников в связи с его применениями в геометрии, искусстве и архитектуре. Ряд Фибоначчи. Красота по формуле.
реферат, добавлен 25.06.2013Анализ алгоритма разбиения графа, приводящего к минимуму числа соединительных ребер за конечное число шагов при наличии ограничений. Методика определения количества внешних соединительных ребер составного элемента графа до внесения в него вершин.
статья, добавлен 12.06.2016Система правил гармонии, основанная на золотом сечении. Икосаэдр и додекаэдр. Ряд Фибоначчи. "Золотая пропорция" - эстетический принцип эпохи Средневековья. Математическое понимание гармонии. Деление отрезка в золотом отношении. Золотой треугольник.
презентация, добавлен 06.04.2012Определение периметра и площади треугольника, длины ребра, объем, уравнения плоскости пирамиды по координатам вершин данных фигур. Приведение уравнения кривой второго порядка к каноническому виду. Решение системы линейных уравнений с тремя неизвестными.
контрольная работа, добавлен 15.11.2013