Понятие величины и её измерения в начальном курсе математики
Развивающее обучение младших школьников на начальном курсе математики школы величин и их измерений. Создание различных видов учебной ситуации. Знакомство с понятием величины длины, площади, массы. Процесс сравнения и его математическое численное значение.
Подобные документы
Понятие "комплексные числа": история их возникновения и роль в процессе развития математики. Действия над двумерными числами и их значение для физики и техники. Процесс расширения понятий этой категории математики от натуральных к действительным.
реферат, добавлен 07.06.2013- 52. Теория графов
История возникновения теории графов. Основные ее определения и теоремы. Применение положений данной теории в школьном курсе математики, в различных областях науки и техники. Объяснение теоретического материала на примере задач по естествознанию.
реферат, добавлен 01.03.2018 Случайные величины, сконструированные на основе нормального распределения, которые наиболее часто встречаются в математической статистике. Распределение случайных величин в статистических таблицах. Функция распределения двумерной случайной величины.
контрольная работа, добавлен 27.03.2022Смысл математического ожидания и дисперсии в случае дискретных случайных величин. Вид формул для их нахождения путем замены. Функция распределения непрерывной случайной величины. Расчет плотности вероятности, а также вероятности попадания на участок.
презентация, добавлен 01.11.2013Эффективные методы обучения и методические приемы, которые активизировали бы мысль школьников, стимулировали бы их к самостоятельному приобретению знаний. Игры на уроках математики. Активизация познавательной деятельности учащихся на уроках математики.
статья, добавлен 12.07.2020Характеристика относительной величины в статистике как обобщающего показателя, который дает числовую меру соотношения двух сопоставляемых абсолютных величин. Рассмотрение основного условия правильного расчета относительной величины и её структуры.
реферат, добавлен 23.12.2015Формирование, развитие и взаимовлияние математики и философии Древней Греции. Милетская математическая школа, заложившая основы математики как доказательной науки. Роль математики в формировании элейской философии. Система философии математики Аристотеля.
реферат, добавлен 30.10.2010Анализ мышления как познавательного процесса. Изучение потенциала математики в развитии логического мышления младших школьников. Развитие логических приемов мышления при формировании математических понятий, а также при обучении учащихся суждению.
дипломная работа, добавлен 16.05.2016Теоретические и психолого-педагогические основы изучения элементов математической логики в начальной школе. Высказывания и операции над ними. Числовые равенства, уравнения и неравенства, правильные и неправильные рассуждения, высказывания с кванторами.
курсовая работа, добавлен 06.11.2010Теоретические основы изучения функциональной линии в курсе алгебры основной школы. Понятие функции, способы её задания и исследования. Изображение замкнутых кривых на координатной плоскости. Методика изучения линейной, квадратной и кубической функции.
методичка, добавлен 30.01.2016Метод межлабораторного сравнения для контролирующих организаций, в котором была применена звездообразная маршрутная схема эталонов массы. Определение референтного значения эталона массы в пилотной лаборатории и в лабораториях-участницах, анализ данных.
статья, добавлен 24.09.2012Ознакомление с ключевыми этапами становления математики. Формирование арифметики, геометрии и алгебры. Предпосылки создания системы счисления. Значение вавилонской и египетской цивилизаций в развитии математики. Анализ греческих методов вычислений.
реферат, добавлен 23.05.2016Числовые характеристики случайных величин. Понятие и свойства математического ожидания и дисперсии. Равномерный закон распределения. Определение непрерывной случайной величины. Область определения функции. Графическое изображение вариационного ряда.
доклад, добавлен 26.03.2012Определение математики и анализ этапов ее развития: элементарная математика; математика переменных величин; аналитическая геометрия; дифференциальное и интегральное исчисление. Развитие математики в России в 18-19 ст. Достижения современной математики.
реферат, добавлен 08.09.2015Функция, определенная на элементах пространства элементарных событий. Дискретные и непрерывные случайные величины. Определение дифференциального закона распределения. Числовые характеристики случайных величин. Использование квантилей распределений.
лекция, добавлен 18.03.2014Роль математики в повседневной жизни и быту. Использование математики в химии, физике, экономике, бухгалтерии, информатике и программировании. Определение значения математики в формировании умений анализировать и моделировать различные ситуации.
статья, добавлен 18.03.2019Общая характеристика вариантов построения модели преподавания математики как открытой сложной развивающейся системы. Знакомство с особенностями системно-структурного подхода к преподаванию математики в вузе. Анализ идеей прагматизма в математике.
статья, добавлен 26.04.2019Зарождение арифметики и элементарной математики, развитие строительных технологий и геометрии. Создание дифференциального, интегрального исчисления. Изучение основных законов механики. Открытия Пифагора и Ньютона. Развитие математики в современный период.
статья, добавлен 20.07.2018Случайные величины, их понятие. Законы распределений и их характеристика. Биномиальное распределение (схема Бернулли). Дискретные случайные величины. Распределение Пуассона, геометрическое распределение. Числовые характеристики, математическое ожидание.
презентация, добавлен 12.11.2017Содержание и особенности практического применения закона распределения случайной величины. Понятие математического ожидания и порядок его вычисления. Структура и свойства дисперсии. Начальный и центральный, корреляционный момент случайной величины.
реферат, добавлен 05.03.2016Греки классического периода - родоначальники математики. Особенности греческой системы исчисления. Величайшие древнегреческие математики. Развитие математики в эпоху Средневековья и Возрождения. История становления современной математической науки.
реферат, добавлен 15.10.2011Пример вычисления математического ожидания. Математическое ожидание функции дискретной случайной величины. Свойства и порядок вычисления дисперсии. Среднеквадратичное отклонение, коэффициент асимметрии и эксцесса, их значение и методика расчета.
презентация, добавлен 26.09.2017Поле как множество, содержащее не менее двух элементов, на котором заданы две бинарные алгебраические операции – умножение и сложение. Варианты построения множества рациональных чисел. Элементарное понятие о дробном числе. Введение правил сравнения.
методичка, добавлен 17.09.2014Математика как наука о количественных отношениях и пространственных формах действительного мира. Этапы развития математики. Использование в математике двух видов умозаключений: дедукции и индукции. Роль математики в различных областях деятельности.
реферат, добавлен 18.06.2012- 75. Теория множеств
Применение теории множеств в различных разделах математики. Кардинальные числа и появление теории меры. Сравнительная количественная оценка множеств. Определение понятий длины, площади и объема в геометрии фигур. Развитие теории интеграла и рядов Фурье.
контрольная работа, добавлен 17.06.2014