Основные понятия теории графов
Изучение ориентированного конечного графа. Характеристика инцидентности ребра и вершины. Основы построения матриц смежности и инцидентности. Рассмотрение примеров объединения графов. Анализ условий и компонентов связности. Изучение эйлеровых цепей.
Подобные документы
Сущность истории создания теории графов. Исследование задачи о Кенигсбергских мостах. Особенность изучения хроматических многочленов. Результаты работы жадного алгоритма при выборе разных порядков вершин. Анализ параллельных и распределенных систем.
реферат, добавлен 14.12.2015Основы теории множеств, переключательных функций, комбинаторного анализа и теории графов. Диаграммы Эйлера, операции над множествами. Бинарные отношения и отображения. Свойства элементарных булевых функций. Основные понятия и определения комбинаторики.
учебное пособие, добавлен 11.10.2014Изучение и создание алгоритма решения задачи о выделении минимального остовного дерева. Понятие теории графов. Характеристика алгоритма Прима, Краскала, Борувки. Определение каркаса, алгоритм выделения минимального остовного дерева нагруженного графа.
курсовая работа, добавлен 03.11.2015Раздел математики, посвященный решению задач выбора и расположения элементов некоторого множества в соответствии с заданными условиями. Рекуррентные соотношения и производящие функции. Теорема о максимальном потоке и минимальном разрезе. Теория графов.
учебное пособие, добавлен 13.01.2014Понятие ранга инцидентности группы как максимального числа ее попарно неинцидентных подгрупп. Нахождение d-ширины (ранга инцидентности) конечных групп, имеющих инвариантную циклическую подгруппу простого индекса. Факторы композиционного ряда такой группы.
статья, добавлен 26.04.2019Теория графов как один из разделов дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Методика решения задач календарно-сетевого планирования и управления. Сущность алгоритма Форда-Фалкерсона.
лабораторная работа, добавлен 28.05.2015История появления теории графов, ее основные понятия, сфера практического приложения. Наиболее эффективные алгоритмы нахождения кратчайшего пути. Методика определения кратчайших путей при помощи графа. Алгоритм Дейкстры. Решение задач практической части.
курсовая работа, добавлен 14.01.2011Задача нахождения характеристических многочленов и спектров предфрактальных графов с затравками циклами, смежность старых ребер которых в траектории не нарушается. Рекуррентная формула, собственные значения (спектра) предфрактального графа с вершинами.
статья, добавлен 29.04.2017Формализованные методы описания и исследования систем. Понятия и определения графов, способы их задания и типы. Применение графов для исследования систем, построение и преобразования их структуры. Случайные события и величины, их основные характеристики.
курсовая работа, добавлен 21.01.2016Исследование помеченных связных графов с заданным числом вершин и точек сочленения. Выведение формулы для энумератора разреженных гомеоморфно несводимых графов с заданным цикломатическим числом. Определение их асимптотики и интегральных представлений.
автореферат, добавлен 02.03.2018Исследование алгоритмов поиска в ориентированных графах, их применение в программах для транспортных и коммуникационных сетей. Способы представления ориентированных графов в виде различных матриц, графически и другими способами с практическими примерами.
курсовая работа, добавлен 23.04.2011Интегральные представления и асимптотика числа помеченных связных разреженных графов. Некоторые необходимые условия хроматичности многочлена. Метод сжатия-разжатия для перечисления графов. Упрощение некоторых формул для числа карт на поверхностях.
автореферат, добавлен 17.12.2017Операции над множествами. Понятия и определения отношений и функций. Характеристики графов, алгоритм Форда–Беллмана нахождения минимального пути. Минимальные остовные деревья нагруженных графов. Формулы логики булевых функций, преобразования формул.
методичка, добавлен 28.06.2013Различные формы задания булевых функций. Переход от одной формы задания к другой. Построение и упрощение формул, задаваемых различными схемами. Нахождение кратчайших маршрутов для взвешенных графов с помощью алгоритма Форда–Беллмана и алгоритма Дейкстры.
курсовая работа, добавлен 18.10.2017Изучение принципов установления изоморфизма или изоморфного вложения между заданными структурами при решении комбинаторно-логических задач и оптимизационных на графах. Пример решения задач распознавания изоморфизма. Определение вершины в алгоритме.
лекция, добавлен 23.01.2017Теория множеств. Способы задания, операции над множествами. Основные понятия соответствия и функции. Понятие мультимножества. Основные понятия теории графов, способы их задания. Сильно связанные графы и их компоненты. Планарность и двойственность.
учебное пособие, добавлен 08.02.2015Простейшие задачи аналитической геометрии на плоскости и системы координат в геодезии и картографии. Применение матриц, элементов теории графов и систем линейных уравнений в географии. Исследования с помощью производных, дифференциалов и интегралов.
учебное пособие, добавлен 15.04.2014Проектирование информационных систем на основе графовых моделей. Анализ связей между элементами и множествами модели ИС в аспекте применения инвариантов теории графов. Использование соответствия Галуа при анализе системных связей информационных моделей.
статья, добавлен 24.07.2018Алгоритм моделирования расширенных цепей Маркова полиномиальными функциями над полем GF(2n). Статистический анализ цепей Маркова по критерию линейной сложности последовательностей. Разработка метода представления неразложимых стохастических матриц.
автореферат, добавлен 28.03.2018Язык бинарных и n-арных отношений. Декартово произведение множеств. Формы представления бинарных отношений. Использование ориентированных графов. Булевое произведение матриц. Подобия на множестве фигур плоскости. Изучение классов эквивалентности.
лекция, добавлен 19.06.2014- 96. Теория графов
Исследование математической теории о совокупности непустого множества вершин и ребер. Анализ кратности неориентированных и ориентированных дуг. Характеристика понятия эквивалентности при множестве вершин. Обоснование гомеоморфного подразбиения дуги.
лекция, добавлен 18.10.2013 Основные способы задания множеств. Анализ рефлексивных, симметричных и транзитивных бинарных отношений. Характеристика исследования ориентированных графов. Главные законы, определяющие свойства логических операций. Изучение элементарных булевых функций.
презентация, добавлен 06.09.2017Рассмотрение теории выпуклых многогранников. Различные виды правильных и полуправильных многогранных геометрических тел, их основные свойства. Грани, ребра и вершины поверхности полиэдра. Пирамида Хеопса – самый большой правильный многогранник в мире.
презентация, добавлен 28.04.2014Построение модели составного кластера на один период и составного динамического суперкластера. Изучение методов анализа и визуализации текстов. Построение модели динамического графа референций. Динамический граф референций для корпуса RuNeWC и ASOAIF.
дипломная работа, добавлен 28.08.2016Представление синусоидального тока комплексными величинами. Матричная алгебра, предмет и содержание ее исследований, современные тенденции и достижения. Понятие и характерные свойства матрицы размера. Вычисление обратных матриц различными способами.
реферат, добавлен 15.06.2013