Случайные события. Вычисление вероятности
Использование правила суммы и правила произведения при решении задач комбинаторики. Классическое и геометрическое определение вероятности. Формула полной вероятности и формула Байеса. Схема и примеры повторных независимых испытаний (схема Бернулли).
Подобные документы
Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.
курс лекций, добавлен 08.01.2016Изучение основных понятий комбинаторики и вероятности. Анализ истории комбинаторики, характеристика ее основных понятий и формул. Анализ сущности понятия вероятность. Характеристика особенностей применение формул комбинаторики к подсчету вероятности.
курсовая работа, добавлен 09.03.2020Предмет теории вероятности и ее задачи. Элементарные и сложные события. Частота событий и вероятность случайных событий. Классический способ задания вероятности. Теорема Муавра–Лапласа, схема Бернулли, теорема Пуассона. Распределение случайных величин.
шпаргалка, добавлен 09.09.2011Пространство элементарных событий и операции над случайными событиями. Основные элементы комбинаторики. Характеристика непрерывных случайных величин. Применение формулы полной вероятности и формулы Байеса. Закон больших чисел. Плотность вероятности.
учебное пособие, добавлен 29.10.2013Математический поиск вероятности события. Расчет двухмерных случайных величин. Теоремы сложения и умножения вероятностей. Закон распределения функции случайного аргумента. Изучение формулы полной вероятности. Математическое ожидание произведения величин.
контрольная работа, добавлен 29.11.2015Математические операции над случайными событиями. Решение задач комбинаторики. Основные методы вычисления вероятностей элементарных событий. Формулы Байеса и Пуассона. Независимые испытания Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.
лекция, добавлен 21.03.2018Подсчет числа различных комбинаций как основная цель и задача комбинаторики. Классическая формула для нахождения вероятности. Перестановки элементов множества как упорядоченные элементы из всех элементов множества. Сочетание элементов вероятности.
презентация, добавлен 01.11.2013Определение вероятности события по классической формуле. Расчет вероятности гипотез по формуле Байеса. Составление закона распределения. Нахождение математического ожидания, дисперсии и среднеквадратического отклонения. Вычисление асимметрии и эксцесса.
задача, добавлен 28.02.2015Независимость событий и случайность отбора. Использование формулы Пуассона и формулы Бернулли. Закон распределения и числовые характеристики. Соотношение доверительной вероятности и коэффициента доверия. Несмещенные оценки математического ожидания.
контрольная работа, добавлен 23.04.2013Теоремы сложения и умножения вероятностей. Использование формулы полной вероятности и формулы Байеса. Локальная и интегральная теоремы Лапласа. Составление ряда распределения. Вычисление математического ожидания и среднего квадратического отклонения.
контрольная работа, добавлен 06.11.2012Анализ возможных значений случайной величины и вычисление вероятности их появления. Использование формулы Бернулли в определении вероятности наступления событий, построение графика функции распределения. Расчет математического ожидания и дисперсии.
контрольная работа, добавлен 20.10.2023Определение вероятности того, что будут сданы два первых экзамена. Вычисление значения функции распределения. Построение многоугольника распределения. Нахождение математического ожидания, дисперсии и среднего квадратического отклонения случайной величины.
контрольная работа, добавлен 26.05.2015Случайные события и предмет теории вероятностей. Классическое определение вероятности. Исследование понятия "элементарный исход". Три основные вида комбинации событий. Наглядный пример вероятностной модели? Аксиоматический метод А.Н. Колмогорова.
презентация, добавлен 11.11.2022Введение понятия бинарного события. Рассмотрение событий, задаваемых булевыми функциями. Доказывание теоремы о вероятности события. Получение расчетных формул для условных вероятностей и формул Байеса, построение задач на применение полученных формул.
статья, добавлен 12.08.2020Анализ решения задач на комбинаторику. Описание задач по классической вероятностной модели, геометрической вероятности. Описание основных формул теории вероятности. Повторные независимые испытания, теорема Бернулли. Дискретные случайные величины.
задача, добавлен 05.05.2015Случайное событие, его частота и вероятность. Теоремы сложения и умножения вероятностей. Формула полной вероятности (формула Бейеса). Дискретные случайные величины. Математическое ожидание и его свойства. Дисперсия непрерывной случайной величины.
методичка, добавлен 05.09.2012Термин "комбинаторика" и его введение в математический обиход знаменитым Лейбницем. Использование комбинаторики при решении задач алгебры, геометрии, производящих функций. Основные правила – суммы и произведения. Формулы размещений без повторений.
реферат, добавлен 24.04.2015Предположение группы событий, объединение которых образует пространство элементарных исходов. Использование диаграммы Венна для теоремы сложения вероятностей и умножения. Применение формулы Байеса для условного исчисления априорной реализации гипотезы.
реферат, добавлен 26.06.2013Вычисление вероятностей в классической схеме, геометрических, условных вероятностей с применением формул Байеса и полной вероятности. Анализ распределений случайных величин – дискретных, непрерывных, скалярных и векторных. Методы распределения функций.
методичка, добавлен 16.05.2016Классическая схема случаев - испытание, где число элементарных исходов конечно, и все они несовместны и равновозможны. Правила суммы, произведения. Характеристика схемы испытаний Бернулли, интегральной теоремы Муавра-Лапласа, схемы Пуассона, цепи Маркова.
реферат, добавлен 25.02.2011Определение содержания и сущности вероятности события, как численной меры степени объективной возможности этого события. Рассмотрение и анализ главных свойств вероятности. Исследование и характеристика основных теорем нахождения вероятности событий.
доклад, добавлен 17.12.2015Определение вероятности появления события во множестве независимых опытов. Расчет математического ожидания и дисперсии величины Х. Расчет и построение графика функции распределения. Построение графиков случайных величин, определение плотности вероятности.
контрольная работа, добавлен 21.09.2023Случайные события и вероятность. Теорема сложения вероятностей для несовместных событий. Формула Байеса. Основные законы распределения дискретных случайных величин. Формула Бернулли. Интегральная теорема Лапласа. Математическое ожидание, дисперсия.
курс лекций, добавлен 08.12.2015Сущность и разновидности случайных событий. Классическое определение вероятности и его ограниченность, а также характерные свойства. Относительная частота события, е определение и оценка, влияющие факторы. Исследование примеров вычисления вероятностей.
контрольная работа, добавлен 30.03.2017Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.
шпаргалка, добавлен 02.02.2016