Нейрокомпьютеры
Понятие и принцип работы нейронных сетей. Типы нейронов и их функциональные особенности: биологические и искусственные. Базовые архитектуры нейронных сетей, их структура и элементы. Этапы программирования средств аппаратной поддержки нейровычислений.
Подобные документы
Применение искусственных нейронных сетей в задаче прогнозирования оставшегося времени безаварийной работы. Предварительная обработка телеметрических данных. Использование аппроксимации обобщенной функции Веибулла. Уменьшение влияния шумовых факторов.
статья, добавлен 29.06.2017Архитектура искусственных нейронных сетей, особенности их обучения с учителем и без него. Правило коррекции по ошибке. Обучение методом соревнования. Основные принципы генетического алгоритма. Анализ применения нейронных сетей для синтеза регуляторов.
дипломная работа, добавлен 23.02.2015Определение сущности системы поддержки принятия решений. Ознакомление с понятием "система искусственного интеллекта". Рассмотрение особенностей использования нейронных сетей в финансах и бизнесе. Анализ преимуществ прогнозирования на нейронных сетях.
курсовая работа, добавлен 17.10.2021Сущность и устройство искусственных нейтронных сетей, их общая характеристика, назначение, принцип работы и составляющие базовые нелинейные элементы. Решение систем обыкновенных дифференциальных уравнений в нейросетевом базисе при помощи системы Simulink.
контрольная работа, добавлен 12.12.2012Искусственный интеллект и нейронные сети. Особенности использования искусственных нейронных сетей в системах управления. Системы адаптивного управления, использующие эталонную модель Ляпунова. Архитектура построения нейросетевых систем управления.
отчет по практике, добавлен 09.02.2019Исследование содержания и принципы разрешения задачи разработки интеллектуальной системы распознавания текста на фотографиях и видеокадрах сложных графических сцен. Методика и этапы обнаружения и локализации текстовых областей с помощью нейронных сетей.
статья, добавлен 23.02.2016Методики компонентного проектирования нейронных сетей для обработки баз знаний, представленных семантическими сетями. Использование унифицированной модели нейронной сети и компонентном подходе к работе с нейронными сетями; библиотека НС-компонент.
статья, добавлен 06.03.2019Форма представления выходной информации. Рассмотрение способов её контроля. Обучение искусственных нейронных сетей. Исследование их преимуществ и недостатков. Источники и способы получения данных. Изучение особенностей применения нейронных сетей.
курсовая работа, добавлен 16.05.2016Классификация ИС в менеджменте. Особенности систем поддержки принятия решений. Характеристика интеллектуального гуманоидного робота от Honda. Базовые понятия и методика построения ЭС. Рассмотрение нейронных сетей. Определение виртуальной реальности.
реферат, добавлен 06.11.2013Опыт применения нейронных сетей в экономических задачах. Моделирование эмпирических закономерностей по ограниченному числу экспериментальных и наблюдаемых данных. Табличный метод - основа искусственного интеллекта. Мониторинг банковской системы.
реферат, добавлен 15.03.2009Разработка интеллектуальных систем, основанных на знаниях нейросетевых и нейрокомпьютерных технологий. Использование нейронных сетей при решении предоставления кредита в современном банке. Создание экспертных систем и организация ассоциативной памяти.
контрольная работа, добавлен 29.11.2015- 62. Нейронные сети
История развития нейронных сетей. Строение биологической нейронной сети. Искусственный нейрон. Общие положения и виды обучения нейронных сетей. Архитектура. Сети прямого распространения сигнала. Рекуррентные сети. Области практического применения.
контрольная работа, добавлен 18.02.2018 Понятие, структура и основные компоненты нейронных сетей, применение множества простых процессоров для их построения. Варианты наиболее распространенных архитектур искусственных НС. Правило вычисления сигнала активности и их распространение в сети.
лекция, добавлен 28.08.2013Разработка искусственных нейронных сетей и машинное обучение как перспективные направления информационных технологий. Преимущества и недостатки, способность нейросетей решать задачи, которые невозможно решить классическими программными алгоритмами.
статья, добавлен 20.02.2019Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.
статья, добавлен 26.04.2019Нейросетевые технологии, история возникновения нейронных сетей. Основные виды и применение искусственных нейронных сетей. Самоорганизующаяся карта Кохонена, задачи, решаемые с ее помощью. Создание компьютерной имитационной модели нейронной сети Кохонена.
дипломная работа, добавлен 12.01.2012Методика разработки состязательных атак, которые основаны на словах и показывают возможность и силу изменения предсказываемого класса нейросети. Анализ особенностей применения регрессионных значений Шепли для интерпретации глубоких нейронных сетей.
дипломная работа, добавлен 28.11.2019Определение алгоритмов (оптимизационных методов) обучения искусственных нейронных сетей. Характеристика их видов: метод случайного поиска и стохастического градиентного спуска. Оценка программной реализации адаптивного метода обучения нейронной сети.
статья, добавлен 29.05.2017Система шифрования на основе искусственных нейронных сетей типа GRNN. Нейронная сеть как подходящий выбор для функциональных форм, используемых для операций шифрования и дешифрования. Построение системы с использованием постоянно изменяющегося ключа.
статья, добавлен 30.04.2018Рассмотрение вопросов, связанных с решением задачи построения и обработки когнитивных структур на основе использования нейронных сетей. Организация специализированной модели, настроенной на решения поставленной задачи "Нейросетевая когнитивная модель".
статья, добавлен 23.08.2020Характеристика понятия образа, проблемы обучения распознаванию образов. Описание истории исследований в области нейронных сетей. Изучение сигнального метода обучения Хебба. Описание структурных схем и алгоритмов нейронных сетей Хопфилда и Хэмминга.
реферат, добавлен 12.06.2015Характеристики нейронных многослойных сетей. Математические эквиваленты нейрофизиологических понятий параметрической и топологической пластичности. Связь степени параметрической пластичности нейронной сети с числом независимо распознаваемых образов.
статья, добавлен 17.01.2018- 73. Прогнозирование котировок финансовых инструментов с помощью нейронных сетей и машинного обучения
Анализ существующих решений в прогнозировании котировок. Программные комплексы для автоматической торговли на основе нейронных сетей. Составление плана проектирования программного комплекса. Разработка резюме проектирования остальных обработчиков.
контрольная работа, добавлен 30.08.2016 Решение стегоанализа с применением искусственных нейронных сетей. Описание методики стеганографического анализа изображений, которая состоит в синтезе сигнатурного и статистического алгоритмов. Методика распознавания скрытой информации в изображениях.
статья, добавлен 16.05.2022Понятие и структура компьютерных сетей как систем распределенной обработки информации, их классификация и типы, функциональные особенности. Оценка главных достоинств и недостатков каждой из сетей, их главные программные и аппаратные составляющие.
контрольная работа, добавлен 06.12.2013