Линейная алгебра
Понятия линейной алгебры и матричного множества. Определители квадратных матриц второго, третьего и высших порядков. Правило Крамера для решения систем линейных уравнений первой степени. Ортогональные функции как базис функционального пространства.
Подобные документы
Совместность системы линейных уравнений методом Гаусса; средствами матричного исчисления. Решение векторных задач методом Крамера. Условие линейной независимости и координаты векторов в базисе. Решение задач с построением графика, пределы функции.
контрольная работа, добавлен 11.03.2012История возникновения и использования матриц в алгебре. Рассмотрение основных понятий и типов матриц. Основные арифметические операции над матрицами. Свойства умножения матриц на число. Вычисление определителей второго и третьего порядка в матрице.
контрольная работа, добавлен 15.11.2017Решение системы линейных уравнений средствами матричного исчисления и с помощью правила Крамера. Вычисление алгебраических дополнений определителя. Сущность метода Гаусса. Формула площади треугольника. Расчет координат нормального вектора плоскости.
контрольная работа, добавлен 21.01.2012Нахождение косинуса угла между векторами при заданных условиях. Схематический чертеж перпендикулярных плоскостей. Приведение к каноническому виду уравнения линий второго порядка. Решение системы линейных уравнений матричным методом и методом Гаусса.
контрольная работа, добавлен 11.06.2016Линейные уравнения и неравенства с двумя неизвестными. Определители произвольного порядка. Системы линейных алгебраических уравнений. Векторы и линейные операции над ними. Аналитическая геометрия на плоскости. Преобразование декартовых координат.
методичка, добавлен 24.03.2015Определение ранга расширенной матрицы системы. Решение системы по формулам Крамера. Средства векторной алгебры. Разложение вектора в базисе по векторам. Уравнение прямой, проходящей через две точки. Определение знаков неравенств. Точки разрыва функции.
контрольная работа, добавлен 03.02.2017История развития квадратных уравнений. Эволюция подходов к решению Древнего Вавилона, Диофанта, Индии, ал-Хорезми, Европы в 13-17 веках. Краткая характеристика теоремы Виета. Особенности применения различных способов решения квадратных уравнений.
научная работа, добавлен 16.09.2016Понятие, применение матрицы в построении экономическо-математических моделей. Системы линейных алгебраических уравнений, решение систем по формулам Крамера. Элементы матричного анализа и аналитической геометрии. Взаимное расположение прямых на плоскости.
учебное пособие, добавлен 06.09.2017Решение квадратной системы линейных уравнений. Использование матричного вида формулы Крамера. Метод последовательных исключений Жордана-Гаусса, элементарные преобразования над строками и перестановка столбцов матрицы. Определение фундаментальной системы.
лекция, добавлен 09.09.2017Нахождение обратной матрицы с помощью правила умножения матриц. Решение системы линейных уравнений с тремя неизвестными методом Крамера. Вычисление координаты точки пересечения медиан, длины высоты, опущенной из вершины, площади заданного треугольника.
контрольная работа, добавлен 09.02.2015- 86. Линейная алгебра
Определение внутреннего угла, уравнения высоты, уравнения медианы, точки пересечения высот треугольника. Построение кривых второго порядка. Решение системы алгебраических уравнений по формулам Крамера и методом Гаусса. Использование модели Леонтьева.
контрольная работа, добавлен 22.12.2019 Решение задач с параметрами – одна из сложных тем курса алгебры средней школы. Настоящая статья посвящена исследованию квадратных уравнений и сводящихся к ним систем уравнений, содержащих параметр, на некоторой области допустимых значений переменной.
статья, добавлен 13.07.2021История развития знаний и известные способы решения квадратных уравнений. Зависимость корней от знака дискриминанта. Решение квадратных уравнений с помощью циркуля, линейки. Свойства коэффициентов квадратного уравнения, теорема Виета и задача Диофанта.
презентация, добавлен 13.01.2017Множества, операции над ними. Соответствия и функции. Элементы общей алгебры. Различные виды алгебраических структур. Элементы математической логики. Логические функции. Булевы алгебры и теория множеств. Язык логики предикатов. Классы графов и их частей.
курс лекций, добавлен 07.04.2013- 90. Обратимость линейных дифференциальных операторов второго порядка в однородных пространствах функций
Изучение линейных дифференциальных операторов (уравнений) второго порядка в однородном пространстве функций, определенных на всей оси. Условия их обратимости. Условия разрешимости классов уравнений второго порядка с помощью операторных матриц 2 порядка.
статья, добавлен 01.02.2019 Источники и классификация погрешности. Прямые и итерационные методы решения систем линейных алгебраических уравнений. Вычисление собственных значений и собственных векторов матриц. Методы решения полной и частичной проблемы собственных значений.
учебное пособие, добавлен 15.11.2016Общее понятие о комплексных числах и изучение методов решения уравнений первой степени. Примеры квадратных, кубических уравнений и извлечение корней. Число действительных корней и методы решения уравнений в радикалах о существований корней уравнений.
презентация, добавлен 13.05.2012Методика составления и решения системы линейных алгебраических уравнений, их графическое изображение. Теорема Кронекера-Канелли о признаках совместимости системы и ее доказательство. Метод Крамера и матричный метод решения неоднородной системы уравнений.
контрольная работа, добавлен 26.07.2009Решение системы трех линейных уравнений методами Крамера и Гаусса с помощью определителей и преобразования матриц. Вычисление длины ребра, угла между ребрами, площади грани, уравнения плоскости и объёма пирамиды по заданным координатам её вершин.
контрольная работа, добавлен 22.08.2014Основные методы решения рациональных уравнений: линейных и их систем, квадратных и сводящихся к ним, возвратных. Формула Виета для многочленов высших степеней. Свойства неравенств, метод интервалов и графическое решение, системы рациональных неравенств.
учебное пособие, добавлен 05.03.2010Пример решения линейных алгебраических уравнений в матричной форме с использованием различных подходов и команды приложения. Вычисление определителя по формулам Крамера и методом Гаусса. Вычисление матрицы системы, ее приведение ступенчатому виду.
лабораторная работа, добавлен 08.06.2015Решение систем линейных алгебраических уравнений. Метод Гаусса - один из самых распространенных методов решения систем линейных уравнений. Метод простой итерации. Метод Зейделя. Метод последовательной верхней релаксации. Метод Ньютона, метод касательных.
реферат, добавлен 06.03.2023Изучение линейных операций над свободными векторами (сложение векторов и умножение вектора на число). Линейные операции на множестве. Критерий коллинеарности. Правило треугольника и параллелограмма. Определение векторного пространства. Базис совокупности.
презентация, добавлен 01.09.2015Понятие и виды матриц, их применение в математике. Алгебраические операции, выполняемые с матрицами. Системы линейных уравнений. Условие разрешимости системы линейных уравнений на языке матриц. Примеры элементарных преобразований матриц, ранг матрицы.
реферат, добавлен 30.01.2016Решение уравнений и систем в различных кольцах и полях как классическая задача алгебры и теории чисел. Алгоритмы решения полиномиальных уравнений и систем в полях алгебраических чисел, основанные на лемме о подъеме решения полиномиального сравнения.
статья, добавлен 18.01.2021