Координатное и инвариантное определения дивергенции векторного поля. Теорема Остроградского-Гаусса. Физический смысл дивергенции

Суть понятия "дивергенция векторного поля", ее свойства, координатное и инвариантное определение. Скалярные и векторные поля. Применение Теоремы Остроградского-Гаусса для преобразования объёмного интеграла в интеграл по замкнутой поверхности и наоборот.

Подобные документы

  • Понятие криволинейного интеграла второго рода, условие его существования. Условия независимости криволинейного интеграла второго рода от пути интегрирования. Механический смысл криволинейного интеграла второго рода, его место в многосвязной области.

    курсовая работа, добавлен 27.11.2018

  • Свойства интеграла от функции комплексной переменной. Вывод формулы Коши. Разложение функции в ряды. Классификация изолированных особых точек, теорема о вычетах. Операционное исчисление и его приложения. Связь между преобразованиями Фурье и Лапласа.

    лекция, добавлен 18.05.2010

  • Характеристика основных этапов развития теории чисел, вложение ученого К. Гаусса. Рассмотрений главных свойств алгебраических полей. Понятие трансцендентных чисел на основании исследований Ж. Лиувилля. Описание простого алгебраического расширения поля.

    реферат, добавлен 05.01.2014

  • Понятие первообразной и особенности теоремы о ней. Неопределенный интеграл и его свойства. Замена переменной и интегрирование по частям в неопределенном интеграле. Интегрирование дробей и иррациональных выражений. Вычисление площадей плоских фигур.

    реферат, добавлен 20.10.2010

  • Первообразная функция и неопределенный интеграл. Восстановление функции по ее производной. Определение пройденного пути по заданной скорости движения. Интеграл и задача об определении площади. Свойства неопределенного интеграла. Примеры интегрирования.

    курсовая работа, добавлен 22.04.2011

  • Геометрический смысл и свойства псевдовектора, перпендикулярного плоскости, построенного по двум сомножителям в результате бинарной операции. Варианты вычислений векторного произведения. Свойства смешанного произведения трех математических объектов.

    презентация, добавлен 01.09.2015

  • Теорема объединенного принципа максимума, проведение качественного анализа поверхности эллипсоида. Характеристика динамической системы, движение которой подчиняется принципу Гамильтона-Остроградского. Оценки конструктивных параметров, траектории движения.

    контрольная работа, добавлен 28.05.2017

  • Прямой ход метода Гаусса - процесс приведения системы к треугольному виду. Методы решения систем линейных уравнений. Анализ преобразований: перемена местами двух любых уравнений; умножение обеих частей уравнения на произвольное число, отличное от нуля.

    контрольная работа, добавлен 18.12.2009

  • Вычисление значения определенных интегралов численно методами прямоугольников, трапеций, Симпсона, квадратур Гаусса-Лежандра, Монте-Карло. Изучение методов интегрирования и написание программы для нахождения значения интеграла разными методами.

    практическая работа, добавлен 02.06.2017

  • Особенность применения конформных преобразований и интеграла типа Коши. Выполнение условий непрерывности тангенциальной составляющей вектора напряженности магнитного поля. Постановка и решение краевой задачи для комплексно-сопряженной магнитной индукции.

    статья, добавлен 06.11.2018

  • Свойства и методы вычисления Эйлерова интеграла первого рода, его функции. Особенности вычисления Эйлерова интеграла второго рода. Применение правила Лейбница. Особенности вычисления интеграла Раабе. Использование метода математической индукции.

    контрольная работа, добавлен 03.06.2012

  • Ознакомление с первоначальной и современной формулировами теоремы Пифагоа. Представление наиболее простого, алгебраического, геометрического и Евклидового методов доказательств теоремы. Определение значения данной теоремы в математических науках.

    презентация, добавлен 15.03.2011

  • Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.

    контрольная работа, добавлен 30.10.2010

  • Первое доказательство частного случая центральной предельной теоремы. Определение нормального распределения. Свойства нормальной кривой Гаусса. Определение экстремума функции. График функции плотности распределения. Максимальная дифференциальная энтропия.

    реферат, добавлен 05.03.2020

  • Фундаментальное значение теоремы Пифагора для геометрии. Методы Евклида и Леонардо Давинчи. Алгебраическая формулировка теоремы. Доказывание ее через подобные треугольники, равнодополняемость, методом площадей. Применение в Индии "правила веревки".

    презентация, добавлен 17.11.2015

  • Сущность совместной системы уравнений. Признаки несовместной системы уравнений. Понятие эквивалентной системы уравнений. Элементарные преобразования системы. Гаусс Карл Фридрих как выдающийся немецкий математик. Решение уравнений методом Гаусса.

    презентация, добавлен 14.01.2018

  • Связь в исследованиях Гаусса между теоретической и прикладной математикой. Первое сочинение Гаусса по теории чисел и высшей алгебре. Решение проблемы определения орбит малых планет и исследование их возмущений. Исследования по теоретической физике.

    реферат, добавлен 15.03.2015

  • Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.

    курс лекций, добавлен 24.04.2009

  • Задачи, приводящие к понятию определенного интеграла, сфера его применения и геометрический смысл. Вычисление площади плоской фигуры. Объёмы тел вращения. Характеристика кривых, встречаются при вычислении определенного интеграла. Исчисление длины дуги.

    дипломная работа, добавлен 14.05.2011

  • Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.

    методичка, добавлен 27.10.2013

  • Вычисление площади плоских фигур при помощи интегралов. Нахождение объема тела, длины дуги, площади поверхности вращения. Определение статических моментов, центра тяжести плоских фигур, координат центра тяжести кривых с помощью определенного интеграла.

    методичка, добавлен 14.12.2016

  • Понятие определенного, двойного и тройного интегралов. Характеристика теорем существования двойного и тройного интегралов. Сущность теоремы о среднем значении для двойного интеграла. Условия перехода пределов интегрирования к полярным координатам.

    контрольная работа, добавлен 27.08.2013

  • Математическое моделирование рассеивания звукового поля на системе объектов разной формы. Разработка решения задачи рассеяния звукового поля системой экранов. Рассеяние акустического поля тонкой незамкнутой сферической оболочкой и многослойной оболочкой.

    автореферат, добавлен 19.08.2018

  • Понятие интеграла Лебега от ограниченной функции как обобщения интеграла Римана на более широкий класс функций, его характеристика и свойства, направления исследования и анализа, история построения. Класс интегрируемых по Лебегу ограниченных функций.

    реферат, добавлен 09.04.2013

  • Исследование этапов вычисления определенных интегралов с помощью формулы Ньютона-Лейбница. Нахождение первообразной подынтегральной функции. Доказательство основной теоремы анализа. Характеристика операций дифференциального и интегрального исчислений.

    презентация, добавлен 18.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.