Решение обыкновенных дифференциальных уравнений в компьютерной системе Mathematica

Назначение, области применения, достоинства и недостатки компьютерной системы для персонального компьютера Mathematica. Введение данных и решение дифференциальных уравнений Абеля и Дарбу математически, в аналитической форме, в системе Mathematica.

Подобные документы

  • Рассмотрение способа нахождения общего вида решения системы рекуррентно связанных дифференциальных уравнений первого порядка с линейной зависимостью в правой части. Особенности использования полученной прямой аналитической зависимости в сложных моделях.

    статья, добавлен 18.12.2017

  • Краткий анализ условия задачи, выделение из нее двух ситуаций. Введение неизвестных, установление зависимости между данными задачи и неизвестными. Составление и решение системы уравнений. Оформление задачи в виде таблицы и запись получившегося ответа.

    презентация, добавлен 16.10.2013

  • Точка покоя системы двух нелинейных обыкновенных дифференциальных уравнений первого порядка. Исследование устойчивости стационарных состояний системы уравнений. Анализ рисунков фазовых портретов соответствующей динамической системы в программе Maple.

    статья, добавлен 16.05.2016

  • Проверка точек нахождения в одной плоскости тетраэдра через расчет его объёма, длину высоты, расстояние между скрещивающимися рёбрами. Решение системы линейных алгебраических уравнений. Составление уравнения гиперболы в канонической системе координат.

    задача, добавлен 20.01.2014

  • Сущность и структура дифференциальных уравнений, требования к ним и значение в математике. Обыкновенные уравнения первого и высшего порядка, их отличительные характеристики и свойства. Дифференциальные уравнения в частных производных: общее описание.

    контрольная работа, добавлен 12.04.2014

  • Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Построение фазового портрета поведения кривых однородной системы линейных дифференциальных уравнений первого порядка с постоянными коэффициентами на плоскости.

    реферат, добавлен 29.11.2015

  • Понятие и типы погрешности: относительная и абсолютная, их определение. Численные методы решений трансцендентных и алгебраических уравнений. Сущность интегрирования. Решение начально-краевых задач для дифференциальных уравнений в частных производных.

    учебное пособие, добавлен 02.05.2013

  • Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.

    курсовая работа, добавлен 08.06.2013

  • Описание ассоциированных решений задачи Коши для систем уравнений в дифференциалах, соответствующих системам уравнений с разрывной и обобщенной правыми частями. Решение этой задачи для соответствующих им систем в прямом произведении алгебр мнемофункций.

    автореферат, добавлен 19.08.2018

  • Варианты параллельной системы вычислений при решении систем дифференциальных уравнений первого порядка с нечеткими условиями. Анализ метода, предложенного Обергуггенбергером и Пицманом в статье "Дифференциальные уравнения с нечеткими параметрами".

    статья, добавлен 27.02.2019

  • Ознакомление с процессом приближенного решения с помощью степенных рядов. Рассмотрение численного решения методом Эйлера и Рунге-Кутты. Исследование порядка вычисления абсолютной и относительной погрешности. Изучение совместного графического решения.

    контрольная работа, добавлен 15.01.2018

  • Численное решение системы дифференциальных уравнений. Рассмотрение сущности задачи Коши, краевых задач и задач на собственные значения. Интерполяция многочленом Ньютона с разделенными разностями. Условная минимизация функций нескольких переменных.

    курсовая работа, добавлен 22.02.2019

  • Способы решения уравнений, содержащих модуль. Использование геометрической интерпритации модуля для решения уравнений. Графики простейших функций, содержащих знак абсолютной величины. Доказательство теорем, определение, решение нестандартных уравнений.

    реферат, добавлен 06.03.2010

  • Постановка и решение задачи дискретного адаптивного управления на основе простейшей математической модели инфекционного заболевания, которая представляет собой систему нелинейных обыкновенных дифференциальных уравнений с запаздывающим аргументом.

    статья, добавлен 26.04.2019

  • Сущность совместной системы уравнений. Признаки несовместной системы уравнений. Понятие эквивалентной системы уравнений. Элементарные преобразования системы. Гаусс Карл Фридрих как выдающийся немецкий математик. Решение уравнений методом Гаусса.

    презентация, добавлен 14.01.2018

  • Характеристика определителя Вронского: определение, общая теория, свойства, примеры применения. Интегрирование неоднородных систем дифференциальных уравнений методом вариации произвольных постоянных: определения, общая теория метода, решение примеров.

    курсовая работа, добавлен 22.04.2011

  • Иван Георгиевич Петровский - известнейший и талантливейший математик XX века: талантливый организатор и общественный деятель, автор современной теории дифференциальных уравнений, многих научных работ которые используются в разных областях математики.

    реферат, добавлен 05.03.2009

  • Формирование умений и навыков решения текстовых задач, применения математики. Составление уравнений, связывающих величины и переменные, математической модели, которая представляет собой уравнение. Решение системы уравнений наиболее рациональным способом.

    статья, добавлен 15.03.2019

  • Фундаментальная система решений и общее решение однородной системы уравнения. Система n линейных уравнений с n неизвестными. Правило Крамера. Однородная система n линейных уравнений, с n неизвестными. Метод Гаусса. Матричный вид системы уравнений.

    контрольная работа, добавлен 06.08.2013

  • Применение дифференциальных уравнений в различных областях науки. Исторические личности и этапы развития дифференциальных уравнений. Практическое применение их в медицине, при создании аппарата "искусственная почка". Дифференциальные уравнения в биологии.

    презентация, добавлен 07.05.2020

  • Основные принципы построения численных методов решения стохастических дифференциальных уравнений (СДУ). Определение жесткой системы СДУ. Анализ основных свойств: устойчивость, порядок сходимости и точность аппроксимации. Метод решения систем жестких СДУ.

    статья, добавлен 27.11.2018

  • Определение третьего порядка по правилу разложения по элементам первой строки. Использование формулы сокращенного умножения для знаменателя. Исследование функций методом дифференцированного исчисления. Решение дифференциального уравнения первого порядка.

    методичка, добавлен 18.03.2015

  • Понятие уравнений третьей степени. Исторические факты решения уравнений высших степеней. Решение уравнений третьей степени с целыми коэффициентами. Формула Кардано для приведенного кубического уравнения. Общие способы решения кубических уравнений.

    практическая работа, добавлен 22.10.2019

  • Математическая формула для подъемной силы, действующей на единицу длины крыла самолета. Специфические особенности применения системы обыкновенных дифференциальных уравнений первого порядка для определения траектории движения летательных аппаратов.

    статья, добавлен 17.11.2021

  • Разработка программно-алгоритмической поддержки символьных преобразований и вычислений на основе средств компьютерной алгебры с представлением решений. Апробация программ на известных задачах и применение их для символьно-численного интегрирования.

    автореферат, добавлен 27.03.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.