Алгебраические уравнения второй, третьей и четвертой степени

Описание способов решения уравнений второй, третьей и четвертой степени. Использование формулы Кардана, выражающего корни уравнения через его коэффициенты при помощи квадратных радикалов. Примеры решения уравнений второй, третьей и четвертой степени.

Подобные документы

  • Уравнение Пелля как одно из наиболее изученных диофантовых уравнений. Использование алгебраических чисел и диофантовых приближений для решения уравнений. Нелинейные рекуррентные формулы для решений уравнения Пелля. Рекуррентная цепочка равенств.

    реферат, добавлен 22.11.2018

  • Использование матричных уравнений в теории устойчивости движения, при решении дифференциальных уравнений Риккати и матриц Сильвестра. Формула неоднородного уравнения. Существенное отличие частного решения от конструкции в виде псевдообратного оператора.

    статья, добавлен 30.10.2016

  • Понятие и математическое описание рациональных уравнений и неравенств. Иррациональные уравнения и дробные неравенства. Особенности методов изучения тригонометрических и логарифмических уравнений. Трансцендентные неравенства и основные методы их решения.

    презентация, добавлен 08.09.2013

  • Математические уравнения как основное средство познания при моделировании физических явлений и строения окружающего мира, их классификация и типы. Понятие диофантового анализа уравнений и принципы его реализации, варианты решения при использовании.

    реферат, добавлен 22.04.2016

  • Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.

    курс лекций, добавлен 23.10.2013

  • Описание вида и проведение линейного понижения дифференциального уравнения второго порядка. Построение функции уравнения дифференциала и содержание определителя Вронского. Структура общего решения уравнений второго порядка, доказательство, теорема.

    контрольная работа, добавлен 26.11.2012

  • Cистематизация и обобщение видов уравнений с параметрами и методы их решения. Случаи, когда исходное уравнение не является квадратным. Значения параметра a, для которых все корни уравнения отрицательны. Свойства логарифмов и методы замены переменной.

    курсовая работа, добавлен 30.03.2015

  • Правила решения уравнений первого порядка, нахождение неизвестной производной функции (дифференциала). Геометрический смысл общего и частного решения. Уравнения с разделяющимися переменными. Простейшие случаи нахождения интегрирующегося множителя.

    курс лекций, добавлен 11.10.2014

  • Дифференциальные уравнения второго порядка с постоянными коэффициентами. Вычисление значения неопределенных коэффициентов. Решение системы из трех уравнений. Три случая решения характеристического уравнения и общее решение однородного уравнения.

    учебное пособие, добавлен 05.05.2015

  • Метод простых итераций (метод последовательных приближений). Вычисления для построения графика уравнения системы. Решение системы нелинейных уравнений Microsoft Excel с использованием надстройки "поиск решения". Решения системы уравнений в пакете mathcad.

    курсовая работа, добавлен 07.11.2020

  • Теория делимости чисел как инструмент решения задач. Нахождение целочисленных решений алгебраических уравнений с тремя неизвестными (диофантовый анализ). Попытки найти решение нелинейного диофантова уравнения или доказать невозможность такого решения.

    реферат, добавлен 28.06.2009

  • Особенности решения иррациональных уравнений и неравенств стандартного типа и повышенной сложности. Исторические аспекты изучения данного вопроса. Возведение обоих частей уравнений в соответствующую натуральную степень. Введение новых переменных.

    реферат, добавлен 14.04.2010

  • Решение систем линейных алгебраических уравнений. Метод Гаусса - один из самых распространенных методов решения систем линейных уравнений. Метод простой итерации. Метод Зейделя. Метод последовательной верхней релаксации. Метод Ньютона, метод касательных.

    реферат, добавлен 06.03.2023

  • Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.

    лабораторная работа, добавлен 16.06.2014

  • Выведены формулы для решений уравнения Пифагора, они отличаются от общеизвестных формул древних. Формулы могут быть использованы для доказательства большой теоремы Ферма, методом бесконечного спуска, для всех нечётных значений показателя степени n.

    статья, добавлен 07.06.2008

  • Понятие функциональных уравнений и их виды, основные способы решения и области применения. Характеристика функциональных неравенств и методы их решения. Приёмы решения задач с параметрами. Использование метода интервалов для решения неравенств.

    курсовая работа, добавлен 13.03.2013

  • Числовые равенства с взаимно простыми основаниями степеней и натуральным показателем степени n > 1. Условия верности таких числовых равенств. Расчет уравнений, при показателе степени равном количеству слагаемых равенств при помощи теоремы Ферма.

    научная работа, добавлен 10.02.2015

  • Значение дифференциальных уравнений для эффективных моделей экономической динамики. Описание квазилинейного уравнения первого порядка в частных производных. Характеристика его многомерного случая и методов нахождения общего решения этого уравнения.

    контрольная работа, добавлен 16.09.2015

  • Решение задач с параметрами в школьной программе. Методы решения уравнений и неравенств. Поиск области определения уравнения. Точки пересечения прямой с графиком функции. Система значений переменных. Множество всех допустимых значений уравнения.

    контрольная работа, добавлен 04.12.2011

  • Особенности теоретических основ численного решения скалярных (нелинейных) уравнений методом хорд. Нахождение отрезков из области определения функции f (x), внутри которых содержится только один корень решаемого уравнения. Отделение корней уравнения.

    курсовая работа, добавлен 29.11.2015

  • Понятия линейной алгебры и матричного множества. Определители квадратных матриц второго, третьего и высших порядков. Правило Крамера для решения систем линейных уравнений первой степени. Ортогональные функции как базис функционального пространства.

    реферат, добавлен 30.05.2022

  • Математический метод решения задачи Фараона. Иррациональное алгебраическое число, которое является корнем уравнения восьмой степени, как ответ задачи. Сведение задачи к нахождению положительного корня уравнения. Суть геометрического решения задачи.

    задача, добавлен 27.03.2013

  • Задачи на определение функции пользователя и вычисление ее значения для различных значений аргумента. Примеры решения нелинейного уравнения различными методами. Выполнение проверки корней уравнения графически и подстановкой корней в исходное уравнение.

    контрольная работа, добавлен 03.06.2011

  • Определение и методы решения иррациональных уравнений. Преобразования, при которых уравнение переходит в равносильное уравнение. Решение уравнения возведением обеих его частей в квадрат или введением новой переменной. Использование искусственных приемов.

    реферат, добавлен 06.03.2010

  • Получения явных выражений и нелинейных рекуррентных соотношений для решений диофантовых уравнений с помощью алгебраических чисел. Нахождение простого решения диофантова уравнения и уравнения Пелля. Рассмотрение возможности обобщения данного подхода.

    статья, добавлен 07.10.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.