Формирование понятий случайной величины, математического ожидания и дисперсии
История понятия случайной величины. Закон больших чисел, расширение проблематики, связанной с ним в работах ученых. Введение математического ожидания и дисперсии в теорию вероятностей. Заложение основ теории случайных процессов на базе физических задач.
Подобные документы
Средняя арифметическая взвешенная, количество величин с одинаковым значением. Таблица Лапласа и линейная связь. Вероятность достоверного события и дисперсия случайной величины. Оценка математического ожидания. Дискретная и непрерывная случайная величина.
контрольная работа, добавлен 30.09.2013Анализ свойств функции распределения случайных величин в зависимости от их вида. Использование непрерывной и дискретной величин в инструментарии таможенной статистики. Показатели рассеяния возможных значений. Свойства математического ожидания и дисперсии.
курсовая работа, добавлен 12.09.2014Закон распределения случайной величины. Рассмотрение геометрической интерпретации оси абсцисс. Понятие момента в механике, описание распределения масс. Исследование функции распределения вероятностей. Начальный момент прерывной случайной величины.
презентация, добавлен 02.05.2020Случай, случайные явления, события, величины, их законы, их свойства и операции над ними. Комплексное изучение истории возникновения, становления и развития теории вероятностей. Два знаменитых вопроса шевалье де Мере. Закон больших чисел в форме Бернулли.
презентация, добавлен 10.02.2020Определение вероятности выбора детали без дефектов из выборки, обработанной на одном определенном станке. Расчет числа взошедших семян из выборки методами теории вероятности. Расчет разности случайных величин, ее математического ожидания и дисперсии.
контрольная работа, добавлен 06.06.2014Расчет числовых характеристик биноминального распределения. Распределение случайной величины по закону Пуассона. Сопоставление дисперсии случайно величины, распределенной по закону Пуассона, с математическим ожиданием. Нормальный закон распределения.
лекция, добавлен 18.03.2014Изучение статического ряда частот и относительных частот выборки. Расчет оценки математического ожидания, дисперсии и среднеквадратичного отклонения. Закон распределения и вероятность попадания величины в заданный интервал по эмпирической функции.
реферат, добавлен 11.02.2014Определение числа различных комбинаций элементов, составленных из различных групп. Формула полной вероятности. Построение столбцовой диаграммы, соответствующей ряду распределения. График эмпирической функции. Расчет математического ожидания и дисперсии.
контрольная работа, добавлен 18.05.2013Дискретные и непрерывные виды случайных величин, законы распределения вероятностей их значений. Биноминальное распределение, формулы Бернулли и Пуассона. Понятие математического ожидания. Необходимые и достаточные условия независимости случайных величин.
контрольная работа, добавлен 02.02.2010Определение понятия и характеристика основных понятий теории вероятностей. Основы комбинаторики, относительная частота события. Геометрическое определение вероятности и ее аксиоматическое построение. Закон распределения дискретной случайной величины.
учебное пособие, добавлен 24.11.2014Операции над событиями и их запись. Относительная частота случайного события, ее устойчивость. Изучение нормального закона распределения. Дисперсия и среднее квадратичное отклонение случайной величины. Неравенства Чебышева и закон больших чисел.
учебное пособие, добавлен 22.06.2014Способы определения вероятности осуществления того или иного события. Оценка математического ожидания и дисперсии некой величины, построение графика функции распределения. Оценка плотности вероятности. Расчет диаграммы рассеивания и линии регрессии.
контрольная работа, добавлен 18.04.2013Понятие случайной переменной в статистике. Совокупность и выборка статистических данных. Характеристики распределения случайной величины. Среднее значение и математическое ожидание. Дисперсия и среднеквадратическое отклонение случайной величины.
лекция, добавлен 04.03.2018События, основные распределения в теории вероятностей. Операции над событиями. Формула полной вероятности. Формула Бейеса и Бернулли, повторение испытаний. Случайные величины, закон распределения дискретной случайной величины, биноминальное распределение.
курсовая работа, добавлен 21.11.2012Определение количества некачественных и дефектных товаров в партии согласно теории вероятности, расчет математического ожидания и среднего квадратичного отклонения. Анализ дисперсии распределения выборки, понятие статистической игры и критериев Байеса.
контрольная работа, добавлен 19.02.2015Числовые характеристики случайных величин. Порядок создания биноминального распределения. Схемы расчета математического ожидания и дисперсии. Равномерное, показательное (экспоненциальное) и нормальное (Гауссовское) распределение случайных величин.
практическая работа, добавлен 26.11.2013Характеристика теории случайных процессов как науки, изучающей закономерности случайных явлений и динамики их развития. Особенности случайных функций, сечения, математического ожидания и реализации случайного процесса, его классификация и формулы.
доклад, добавлен 23.04.2014Непрерывные случайные числа, функция распределения вероятности. Вычисление математического ожидания функции дискретной случайной величины. Дисперсия и стандартное отклонение. Конфликт между несмещенностью и эффективностью. Среднеквадратичная ошибка.
презентация, добавлен 26.01.2015Примеры решений задач по теории вероятностей. Вероятность попадания людей в ту или иную подгруппу. Вероятность выигрыша ставки. Закон распределения случайной величины. Временные интервалы и критерий согласия Пирсона. Выборочные коэффициенты корреляции.
контрольная работа, добавлен 17.03.2015Определение размаха варьирования уровня моря. Расчет числа и величины разрядов выборки. Подсчет частот по интервалам. Составление ряда распределения. Построение полигона и гистограммы. Оценка математического ожидания, дисперсии. Проверка критерия Пирсона.
курсовая работа, добавлен 18.10.2017Основные числовые характеристики дискретной случайной величины. Свойства математического ожидания. Исследование двумерного дискретного случайного вектора. Частные распределения по компонентам и их характеристики. Ковариационная и корреляционная матрицы.
курсовая работа, добавлен 28.12.2017Использование теоремы Муавра Лапласа при решении задачи по теории вероятности. Нахождение закона распределения, математического ожидания и дисперсии. Построение графика функции распределения, полигона относительных частот и гистограммы накопленных частот.
задача, добавлен 24.08.2015Особенности определения вероятности возникновения ошибки при различных процессах и применение схемы Бернулли. Математическое ожидание для случайной величины, распределенной по биномиальному закону. Расчет генеральной и выборочной дисперсии чисел.
контрольная работа, добавлен 13.11.2014Классическая формула сложения вероятностей, геометрические вероятности. Формула Байеса и схема Бернулли. Закон распределения случайной величины. Ковариация и коэффициент корреляции, функция распределения и функция плотности непрерывной случайной величины.
курсовая работа, добавлен 25.12.2014Расчет нахождения точечных оценок распределения на основании выборок — ряда значений хi, принимаемых случайной величиной х в n независимых опытах. Оценка среднего квадратического отклонения случайной величины х как корня квадратного из дисперсии.
контрольная работа, добавлен 20.02.2014