Исследование и решение систем уравнений первой степени

Дифференциальное и интегральное исчисления. Основные типы матриц. Миноры и алгебраические дополнения. Союзная и обратная матрицы. Правило Крамера для решения линейных уравнений. Билинейная и квадратичная форма. Собственные числа и линейное пространство.

Подобные документы

  • Рассмотрение решения уравнений с двумя переменными, систем уравнений, методов решения систем, таких как метод подстановки, сложения, графический, метод введения новых переменных, определителей второго и третьего порядков и теоремы Кронекера-Капеллы.

    научная работа, добавлен 25.02.2014

  • Вычисление суммы и разности заданных квадратных матриц, произведения матрицы и числа. Расчет детерминантов второго, третьего и четвертого порядка и поверка вычислений. Определение переменной в системе линейных уравнений с помощью матричного метода.

    задача, добавлен 31.07.2011

  • Понятие матрицы и ее виды. Определители 2-го и 3-го порядков. Совместимость систем линейных алгебраических уравнений. Теорема Кронекера-Капелли. Использование систем линейных уравнений при решении экономических задач. Производные функции, их применение.

    учебное пособие, добавлен 02.02.2012

  • Решение системы линейных уравнений матричным способом и по правилу Крамера. Построение области допустимых решений. Решение закрытой транспортной задачи. Составление экономико-математической модели линейного программирования. Минимизация целевой функции.

    контрольная работа, добавлен 11.04.2009

  • Приближенные методы решения систем линейных уравнений. Эффективность применения приближенных методов. Метод итераций в системе с n линейных уравнений с n неизвестными. Решение СЛАУ высокого порядка методом Ланцоша. Проблема выбора начального приближения.

    реферат, добавлен 16.03.2012

  • Сумма элементов матрицы по строкам. Алгоритм нахождения обратной квадратной матрицы и ее определителя. Решение системы линейных уравнений методом Крамера и Гаусса. Построение математической модели экономического процесса и определение плана производства.

    контрольная работа, добавлен 21.05.2013

  • Решение однородных и неоднородных линейных систем. Существование фундаментальной матрицы и ее построение. Анализ методов вариации произвольных постоянных. Решение дифференциальных уравнений первого порядка. Элементы теории устойчивости, уравнение Пфаффа.

    курс лекций, добавлен 11.10.2014

  • Рассмотрение численных методов решения уравнений переноса и реализация одного из методов решения на языке программирования С/C++ и в пакете MS Excel. Рассмотрение и решение задачи Коши для уравнений переноса. Линейное одномерное уравнение переноса.

    курсовая работа, добавлен 03.10.2017

  • Классические итерационные метода. Релаксация как методика уточнения решения. Прямые методы решения системы линейных алгебраических уравнений. Особенности итерационного метода Якоби, примеры его применения. Метод простых итераций, условия сходимости.

    курсовая работа, добавлен 25.01.2017

  • Понятие и структура матриц, их классификация и типы, подходы к анализу. Типы и свойства операций, производимых над матрицами: сложение, умножение. Понятие определителя матрицы, а также правила его вычисления. Системы линейных алгебраических уравнений.

    лекция, добавлен 12.11.2017

  • Обзор существующих методов решения нелинейных уравнений. Алгебраические и трансцендентные уравнения. Методы локализации корней. Алгоритм метода Ньютона. Численные методы решения нелинейных уравнений. Разработка и тестирование программного продукта.

    курсовая работа, добавлен 14.05.2014

  • Определение системы линейных однородных уравнений и ее нетривиальные решения. Доказательство по теореме Крамера. Пример линейной комбинации. Образование базиса подпространства. Понятие фундаментальной системы решений. Линейные неоднородные уравнения.

    лекция, добавлен 26.01.2014

  • Применение приближенных (численных) способов нахождения корней системы матричных уравнений с большим числом неизвестных. Содержание методов простых итераций, Зейделя, релаксации, используемых в решении уравнений. Теорема сходимости итерационного процесса.

    лекция, добавлен 21.09.2017

  • Метод итерации - решение систем линейных алгебраических уравнений с вещественными коэффициентами относительно неизвестных, принимающих вещественные значения. Характеристика методов Якоби, Гаусса-Зейделя, П.Л. Чебышева. Применение итерационных методов.

    курсовая работа, добавлен 11.06.2013

  • Доказательство формулы для определителя Грама и Леммы Накаямы. Решение системы линейных уравнений с ненулевым определителем основной матрицы. Ее запись в матричном виде. Реализация метода Крамера со сложностью, сравнимой со сложностью метода Гаусса.

    доклад, добавлен 11.12.2017

  • Аналитическое решение алгебраического уравнения n–ой степени (в радикалах). Примеры решения проблем собственных значений для нахождения функций от матриц и устойчивости линейных дифференциальных и разностных уравнений. Свойства доминирующего корня.

    научная работа, добавлен 22.07.2014

  • Преобразование и объединение групп общих решений тригонометрических уравнений. Решение уравнений с применением формул тройного аргумента или понижения степени. Функциональные методы решения тригонометрических и комбинированных уравнений, отбор корней.

    реферат, добавлен 09.09.2016

  • Изучение матриц и линейных уравнений как основных элементов линейной алгебры. Описание элементов векторной алгебры. Исследование основ аналитической геометрии на плоскости и в пространстве. Составляющие производных, функций и математического анализа.

    курс лекций, добавлен 23.09.2012

  • Понятие, применение матрицы в построении экономическо-математических моделей. Системы линейных алгебраических уравнений, решение систем по формулам Крамера. Элементы матричного анализа и аналитической геометрии. Взаимное расположение прямых на плоскости.

    учебное пособие, добавлен 06.09.2017

  • Понятие алгебраического уравнения четвертой степени, история его решения. Пример решения биквадратного и возвратного уравнений четвертой степени. Решение Декарта—Эйлера. Анализ схемы метода Феррари, разложения на множители и кубическая резольвента.

    доклад, добавлен 04.10.2013

  • Рассматривается задача решения разреженных положительно определенных систем линейных алгебраических уравнений с медленно меняющимися коэффициентами. Приведены условия локальной и глобальной сходимости алгоритма. Обсуждаются его основные свойства.

    статья, добавлен 26.04.2019

  • Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.

    курсовая работа, добавлен 05.06.2014

  • Решение дифференциальных уравнений с разветвляющимися переменными. Определение и решение однородных дифференциальных уравнений и уравнений в полных дифференциалах. Решение линейных дифференциальных уравнений первого порядка и уравнений Бернулли.

    лекция, добавлен 14.03.2014

  • Определение, расчет и совместность системы линейных уравнений. Варианты решений фундаментальной системы уравнений и вычисление рангов матрицы. Модифицированная матрица и вычетание уравнений из строк. Определение произвольный системы, отличный от нуля.

    контрольная работа, добавлен 21.11.2012

  • Изучение истории развития науки математики. Характеристика применения Ахмесом метода одного и двух ложных положений (фальшивое правило). Анализ способов составления и решения квадратных уравнений в древнем Вавилоне. Решение уравнений в целых числах.

    реферат, добавлен 02.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.