Кратные, криволинейные и поверхностные интегралы
Понятие кратных (двойных и тройных) интегралов, криволинейных и поверхностных. Основные определения и формулировки и базовые теоремы Грина, Стокса и Гаусса-Остроградского. Специфика их применения к решению соответствующих задач геометрии и механики.
Подобные документы
Понятие интеграла движения. Независимые интегралы движения для замкнутой системы. Асимптотическая аддитивность интегралов движения. Формулировка, доказательство теоремы Нётер. Некоторые замечания относительно теоремы Нётер. Сохранение аддитивной величины.
контрольная работа, добавлен 19.11.2017Понятие о кубатурных формулах. Метод ячеек для вычисления кратных интегралов. Последовательное интегрирование, кубатурная формула типа Симпсона. Принципы построения программ с автоматическим выбором шага. Блок-схема и листинг программы, результаты.
курсовая работа, добавлен 30.10.2010Формула Остроградского-Гаусса. Понятие о задачах векторного анализа и теории поля. Определение скалярного поля. Циркуляция векторного поля. Потенциальное векторное поле. Собственные интегралы, зависящие от параметра. Признаки равномерной сходимости.
курс лекций, добавлен 15.05.2016Численные методы и их использование для вычисления кратных интегралов. Метод ячеек как один из простейших способов вычисления интеграла. Оценка погрешности метода ячеек. Текст и блок-схема программы. Выполнение программы в математическом пакете.
контрольная работа, добавлен 30.10.2010Интегральная сумма для криволинейного интеграла. Порядок ее вычисления путем замены в подынтегральном выражении переменных Х и У через параметр, представление дифференциала дуги dS как функции параметра. Примеры вычисления криволинейных интегралов.
презентация, добавлен 17.09.2013- 31. Векторный анализ
Криволинейные интегралы 1 и 2-го рода: механический смысл, свойства, формулы вычисления. Общий вид уравнения прямой, проходящей через две произвольные точки. Определение координат центра тяжести дуги циклоиды. Формула Грина и объяснение ее смысла.
лекция, добавлен 21.11.2013 Методы численного интегрирования: формулы прямоугольников, трапеций, Симпсона и Эйлера. Интегрирование кратных интегралов. Метод ячеек. Повторное применение квадратурных формул. Листинг программы нахождения значений интеграла от функции одной переменной.
курсовая работа, добавлен 15.03.2013Собственные и несобственные интегралы, зависящие от параметра. Признаки, свойства и вычисление двойного интеграла в случае прямоугольной и криволинейной области. Определение интеграла Эйлера первого рода (Бета-функция) и второго рода (Гамма-функция).
учебное пособие, добавлен 28.12.2013Понятие и сущность гладкой поверхности, порядок и принципы определения ее площади. Вычисление поверхностных интегралов первого и второго порядка. Скалярное поле как совокупность двух множеств: множества точек пространства и соответствующих чисел.
лекция, добавлен 18.10.2013- 35. Теория поля
Основные понятия теории поля. Фиксированная система координат в пространстве. Рассмотрение основных характеристик и классификации скалярного и векторного полей. Формулы Стокса и Остроградского-Гаусса. Векторный дифференциальный оператор Гамильтона.
лекция, добавлен 29.09.2014 Понятие криволинейных координат точки. Контравариантные и ковариантные компоненты вектора. Ортогональные криволинейные параметры и условия их ортогональности. Определение выражения для скорости и ускорения точки в цилиндрической системе координат.
учебное пособие, добавлен 28.12.2013Решение прикладных задач в области геометрии, механики и физики с использованием определённого интеграла. Вычисление площади криволинейной трапеции. Определение объёма тела, полученного вращением плоской фигуры вокруг оси. Нахождение длины дуги кривой.
контрольная работа, добавлен 09.05.2021Исследование приложения двойных, тройных интегралов в пространстве, разложение функции в ряд Фурье, а также отыскание наибольшего и наименьшего значений функции в этой области, и решение задачи линейного программирования геометрическим и симплекс методом.
курсовая работа, добавлен 24.04.2011Знакомство с основными особенностями теоремы Чевы и Менелая. Рассмотрение способов и методов решения решения геометрических задач. Общая характеристика примеров применения прямой, а также обратной теорем Чевы. Анализ задач для самостоятельного решения.
контрольная работа, добавлен 26.02.2020Краткая биография М.В. Остроградского. Основные труды ученого в сфере математического анализа и механики. Характеристика основных научных достижений М.В. Остроградского в области исследования интегрирования рациональных функций и уравнений динамики.
презентация, добавлен 07.12.2015Понятие и задача интегрирования. Свойства неопределённых интегралов как следствие соответствующих свойств для производных. Правило замены переменных в интеграле, вычисление неопределенных интегралов. Метод вычисления интегралов от рациональных функций.
лекция, добавлен 10.04.2016Роль Лейбница в развитии математического анализа. История интегрального исчисления. Интегрирование тригонометрических функций, теория поверхностных интегралов, определённый и несобственный интегралы. Криволинейная трапеция. Дифференциальные уравнения.
контрольная работа, добавлен 29.01.2013Вычисление потока векторного поля через полную поверхность пирамиды в направлении нормали. Вычисление циркуляции векторного поля по замкнутому контуру путем применения теоремы Стокса к контуру и ограниченной им поверхности. Теорема Остроградского.
реферат, добавлен 22.12.2010Определение несобственного интеграла по неограниченному промежутку. Формула Ньютона-Лейбница для интегралов первого рода. Признаки сравнения Абеляра и Дирихле для функций. Особенность на левом конце промежутка интегрирования. Простейшие теоремы.
курсовая работа, добавлен 09.10.2014Описание примера использования Р-методологии для решения довольно специфических задач начертательной геометрии. Принципы использования метода как унифицированного инструмента обучения решению разных задач в образовательных учреждениях различных уровней.
статья, добавлен 18.09.2018Определенный интеграл по Риману. Теоремы о существовании интеграла от непрерывной и монотонной функции. Неравенства и теорема о среднем. Приближенное вычисление определенных интегралов. Метод параболических трапеций (метод Симпсона). Суть числовых рядов.
контрольная работа, добавлен 20.02.2012Принцип Дирихле и его применение. Элементы теории, определение и свойства сравнений. Вычеты по модулю, системы вычетов. Теоремы Эйлера и Ферма. Нахождение остатков от деления степеней. Применение движений плоскости к решению задач элементарной геометрии.
разработка урока, добавлен 20.12.2010Краткая биография древнегреческого философа и ученого Пифагора Самосского, его роль в развитии математики. Моральный кодекс пифагорейцев. История создания теоремы Пифагора, различные формулировки и способы доказательства. Задачи на применение теоремы.
реферат, добавлен 18.04.2015Вычисление площадей и объёмов с помощью двойных интегралов. Анализ сущности двойного интеграла в геометрии. Расчет интегральной суммы в криволинейном цилиндре. Площадь области, ограниченной замкнутой кривой. Нахождение определенного интеграла функции.
презентация, добавлен 17.09.2013- 50. Осевая симметрия
Изучение свойств преобразований плоскости. Примеры решения задач с использованием преобразований плоскости. Анализ содержания школьных учебников геометрии по данной тематике. Возможности применения преобразований плоскости к решению задач планиметрии.
курсовая работа, добавлен 09.06.2013