Квазикристаллическая фрактальная мозаика плоскости
Рассмотрение нового вида ромбической мозаики на правильных многоугольниках. Расчет общего числа ромбов и половинок ромбов для нечетных многоугольников. Виды вписанных ромбов в большую часть n-угольника. Формула для вычисления числа ромбов по видам.
Подобные документы
Узагальнення та систематизація надбаних учнями знань, вмінь оперувати поняттями додатне, від'ємне число, цілі та раціональні числа, сприяння вихованню у них почуття самоконтролю. Різнорівневі завдання для самостійної роботи на аркушиках через копірку.
разработка урока, добавлен 20.09.2019- 102. Число "Пи"
"Пи" - математическая константа, равная отношению длины окружности к длине её диаметра. Методы определения значения числа. Анализ математических формул древних ученных: Архимеда, Людольфа ван Цейлена. Вычисление знаков после запятой у числа "Пи".
доклад, добавлен 31.01.2018 Особливість визначення поняття числа та видів числових множин. Досліджень чисел, які входять до множини цілих, раціональних та дійсних чисел. Розгляд різниці записів у вигляді нескінченного десяткового дробу раціонального та ірраціонального чисел.
разработка урока, добавлен 08.06.2019- 104. Комплексные числа
Геометрическая интерпретация комплексного числа. Арифметические операции над комплексными числами. Геометрическое изображение суммы, вычитание и деление, геометрическое изображение разности, тригонометрическая форма, свойства модуля и аргумента.
курсовая работа, добавлен 29.11.2014 Дослідження означення арифметичного квадратного кореня з невід'ємного числа. Характеристика способу розв'язання найпростіших ірраціональних рівнянь. Особливість ознайомлення учнів з новою дією, що допоможе знайти число за значенням його квадрата.
разработка урока, добавлен 12.10.2018Развитие математики в Западной Европе. Изучение теоретико-числовых свойств чисел Фибоначчи, возможности их применения к решению задач. Применение числа Фибоначчи в вопросах, связанных с исследованием путей в различных геометрических конфигурациях.
реферат, добавлен 26.03.2019- 107. Комплексные числа
История возникновения комплексных чисел, их общая характеристика. Действия над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексного числа, его тригонометрическая, показательная форма. Применение комплексных чисел.
контрольная работа, добавлен 30.01.2010 - 108. Числа Бернуллі
Послідовність многочленів Апеля. Многочлени та числа Бернуллі. Основна властивість многочленів Бернуллі. Зв’язок з простими числами. Експоненційна генератриса послідовності. Правило винесення за знак біноміального коефіцієнта. Формальний степеневий ряд.
курсовая работа, добавлен 22.01.2015 Частные случаи уравнений плоскости. Сущность параметрического и канонического уравнения, взаимное расположение прямых. Нормальное уравнение плоскости, специальные виды уравнений. Решение уравнений с направляющим вектором. Пример общего уравнения прямой.
презентация, добавлен 21.09.2017Числа Фибоначчи - математическая последовательность, отражающаяся во всех творениях мироздания, которые подчинены единым законам природы и имеют большой практический и теоретический интерес. Анализ специфических особенностей правила золотого сечения.
творческая работа, добавлен 26.04.2019Рассматривается специальная задача об эргономичном размещении конечного числа символов по конечному числу ячеек. Решение задачи применяется для более удобного размещения английских и русских букв на клавиатуре мобильного телефона.
статья, добавлен 10.11.2015Определение сходимости степени ряда. Применение признаков Даламбера и Коши. Использование формулы Тейлора при аппроксимации и доказательстве большого числа теорем в дифференциальном исчислении. Вычисление значений показательной и логарифмической функции.
контрольная работа, добавлен 16.12.2013- 113. Історія арифметики
Виникнення та розвиток числових уявлень, лічби і поняття числа. Історія нумерації і систем числення. Еволюція сучасних цифр. Основні етапи розвитку дробів. Натуральні і дробові числа. Велика та мала теореми Ферма. Теорія ірраціональних та дійсних чисел.
учебное пособие, добавлен 19.04.2013 Определение и свойства модуля (абсолютной величины) действительного числа. Расстояние между точками числовой прямой. Графическое изображение на прямой окрестности точки как множества решений неравенства. Изучение правил сложения и вычитания модулей.
презентация, добавлен 21.09.2013- 115. Комплексные числа
История появления комплексных чисел. Геометрическая интерпретация комплексного числа. Модуль, сложение, умножение, квадратные уравнения комплексных чисел. Тригонометрическая форма, модуль и аргументы чисел. Возведение в степень и извлечение корня.
контрольная работа, добавлен 22.01.2011 История открытия алгебраических чисел: действительного числа и мнимой единицы. Открытие метафизиком Смирновым В.В. еще двух алгебраических чисел: доказательства, расчеты, научное обоснование. Полезность данного открытия на примерах решения уравнений.
научная работа, добавлен 30.04.2014Часы, или современный взгляд на тригонометрию. Теорема косинусов и синусов. Направленные отрезки и векторы, вычитание и умножение на число. Формула вспомогательного угла, или сложение колебаний равной частоты. Модуль и аргумент комплексного числа.
учебное пособие, добавлен 28.12.2013Зарождение счета в глубокой древности. Появление систем счисления. Исследование процесса формирования понятия натурального числа. Вавилонские клинописные обозначения числа. Создание счетных приборов. Осознание людьми бесконечности натурального ряда чисел.
реферат, добавлен 13.02.2015Число как основное понятие математики. Натуральные числа и их функции. История происхождения дробей в Древней Греции, Египте, Риме, Руси. Развитие идеи отрицательного количества в Европе. Определение действительных рациональных и иррациональных чисел.
реферат, добавлен 15.12.2016Число как основное понятие математики. Натуральные числа, их функции. Вавилонские шестидесятеричные дроби. Нумерация и дроби в Древней Греции. Развитие идеи отрицательного количества в Европе. Векторные, действительные рациональные и иррациональные числа.
реферат, добавлен 02.03.2017Понятие комплексного числа, история развития. Свойства комплексных чисел, действия с ними: сложение, вычитание, возведение в степень, извлечение корня, графическое изображение, перевод в тригонометрическую форму. Применение комплексных чисел в геометрии.
реферат, добавлен 02.04.2022Доказательство отсутствия абсолютно трианалитических торов в обобщённом многобразии Куммера. Обобщение основных результатов Гуана для гиперкэлеровых многообразий большей размерности и получение ограничений на числа Бетти гиперкэлеровых многоообразий.
диссертация, добавлен 28.12.2016Применение законов сложения и умножения и вычисления результата примеров. Доказывание истинности равенства методом математической индукции. Теоретико-множественное обоснование вычитания и умножения. Натуральный смысл числа в результате измерения.
контрольная работа, добавлен 21.05.2014Числа, сравнимые по модулю третьего натурального числа. Краткая характеристика особенностей и недостатков сравнения, сложения, умножения по ненулевому рациональному модулю. Доказательство, что выражение является простым числом. Способы решения уравнений.
статья, добавлен 03.03.2018Конечные суммы и их свойства, декартовая и полярная система координат. Комплексные числа и понятие многочлена. Проекция вектора и ее свойства, аналитическая геометрия на плоскости. Канонические уравнения линий второго порядка, матрицы и действия над ними.
курс лекций, добавлен 20.08.2017