Теоретические основы принципа включений-исключений и особенности его применения в решениях задач по дискретной математике

Принцип включений-исключений - важный комбинаторный приём, позволяющий подсчитывать размер каких-либо множеств или вычислять вероятность сложных событий. Специфические особенности формулировки данного математического закона с помощью диаграмм Венна.

Подобные документы

  • Постановка основной задачи линейного программирования. Графический метод решения ОЗЛП с двумя переменными. Преобразование системы уравнений методом полных жордановых исключений. Расчетный алгоритм симплекс-метода. Понятие и запись оптимального плана.

    учебное пособие, добавлен 17.04.2013

  • Порядок расчета вероятности наступления того или иного события. Составление и исследование функция распределения. Вероятность попадания случайной величины в заданный интервал. Проведение расчетов полной вероятности события, анализ полученных результатов.

    контрольная работа, добавлен 30.10.2012

  • Основные понятия теории вероятности. Понятие события и его основные виды. Вероятность событий: классическое и статистическое. Элементы комбинаторики. Теорема сложения вероятностей. Формула полной вероятности и формула Байеса. Схема испытаний Бернулли.

    курсовая работа, добавлен 07.06.2014

  • Формулы схемы Пуассона для нахождения вероятности события. Закон распределения случайной дискретной величины, построение функции распределения. Математическое ожидание, среднее квадратическое отклонение. Проверка гипотезы критерием хи-квадрата Пирсона.

    контрольная работа, добавлен 02.03.2017

  • Основные свойства множеств с самоприрадлежностью. Бесконечно малая величина в математике. Множество, содержащее все множества, задаваемое непредикативной схемой свёртывания. Использование бесконечных, недостижимых последователей в математических теориях.

    статья, добавлен 26.04.2019

  • Понятие о графе, способы его задания. Достижимость и обратная достижимость вершин графа. Графовые модели для оптимизации транспортных сетей и потоков, решения задач календарного планирования, задач о назначениях и других задач дискретной оптимизации.

    курсовая работа, добавлен 21.12.2011

  • Определение вероятности случая при заданном исходе. Вычисление возможности наступления всех последовательностей событий, приводящих к требуемому результату. Построение ряда распределения случайной величины. Расчет ее математического ожидания и дисперсии.

    задача, добавлен 09.12.2015

  • Решение квадратной системы линейных уравнений. Использование матричного вида формулы Крамера. Метод последовательных исключений Жордана-Гаусса, элементарные преобразования над строками и перестановка столбцов матрицы. Определение фундаментальной системы.

    лекция, добавлен 09.09.2017

  • Определение закона распределения случайной величины. Нахождение плотности распределения, математического ожидания, дисперсии и среднего квадратического отклонения. Построение графиков дифференциальной и интегральной функций. Анализ вероятности события.

    контрольная работа, добавлен 14.12.2015

  • Определение вероятности по формулам Бернулли и Байеса. Проведение исследования интегрального закона распределения. Вычисление математического ожидания, дисперсии и среднеквадратического отклонения. Особенность построения статистического разделения.

    контрольная работа, добавлен 24.05.2016

  • История возникновения аксиоматического метода в математике и в гуманитарных науках. Решение учебно-исследовательских задач в университете с использованием систем компьютерной математики. Применение теории нечетких множеств в гуманитарных исследованиях.

    статья, добавлен 17.07.2018

  • Понятие противоположного события в теории вероятностей. Сумма двух событий А и В равняется событию С, которое состоит из наступления события А или В, или событий А и В вместе. Произведение двух событий А и В, состоящее в одновременном их наступлении.

    презентация, добавлен 01.11.2013

  • Доказывание с помощью математики, что вероятность угадать ответы в тестовом задании очень мала, что невозможно получить положительную оценку угадыванием. Определение вероятности получения положительной оценки при решении тестового задания по математике.

    творческая работа, добавлен 24.06.2020

  • Использование формулы полной вероятности при выборе шаров. Определение благоприятного числа случаев. Вычисление математического ожидания, дисперсии и среднеквадратического отклонения. Построение закона распределения случайной величины и графиков функций.

    контрольная работа, добавлен 09.10.2014

  • Изучение основ комбинаторики. Классическое определение вероятности. Свойства математического ожидания. Понятие о критериях согласия. Виды уравнений регрессии. Методы анализа статистических данных. Применение закона распределения случайной величины.

    учебное пособие, добавлен 18.10.2014

  • Независимость событий и случайность отбора. Использование формулы Пуассона и формулы Бернулли. Закон распределения и числовые характеристики. Соотношение доверительной вероятности и коэффициента доверия. Несмещенные оценки математического ожидания.

    контрольная работа, добавлен 23.04.2013

  • Вычисление вероятности того, что телефонный номер не содержит цифры пять; выхода прибора из строя в результате отказа одного из его блоков. Определение математического ожидания, дисперсии, функции распределения случайной величины. Построение ее графика.

    контрольная работа, добавлен 13.01.2015

  • Определение вероятности события по классической формуле. Расчет вероятности гипотез по формуле Байеса. Составление закона распределения. Нахождение математического ожидания, дисперсии и среднеквадратического отклонения. Вычисление асимметрии и эксцесса.

    задача, добавлен 28.02.2015

  • Рассмотрение обозначений, принятых в теории множеств. Характеристические функции множеств, свойства операций над множествами. Применение понятия мощности множества для количественной характеристики множеств. Верхняя и нижняя грани числового множества.

    курсовая работа, добавлен 07.05.2015

  • Решение задачи по теории вероятностей. Использование правил дифференцирования и формул для производных степенной и тригонометрической функций, нахождение производных. Отображение данных множеств при помощи кругов Эйлера. Область определения функции.

    контрольная работа, добавлен 30.06.2021

  • Понятие линейного, нормированного и предгильбертового пространства. Последовательности точек метрического пространства, предел и непрерывность его отображений. Необходимое условие компактности множеств. Принцип Баноха сжимающих отображений, их свойства.

    лекция, добавлен 08.11.2015

  • Определение математического ожидания, дисперсии, функции распределения, вероятности событий, ошибок измерений. Построение эмпирической функции распределения. Статистическая проверка гипотезы о нормальном распределении. Оценка коэффициента корреляции.

    контрольная работа, добавлен 13.05.2014

  • Теоретические аспекты понятия "случайное событие" и характеристика вспомогательных терминов. Вероятность происхождения события: ее свойства и частота, правила математических действий с нею, основные принципы использования вероятностных расчетов.

    реферат, добавлен 19.07.2010

  • Системы счисления, понятие множества. Операции над множествами. Графическое изображение множеств, диаграммы Эйлера-Венна. Таблицы истинности высказываний. Расчет бинарного отношения между множествами А и В. Частота появления значения случайной величины.

    шпаргалка, добавлен 30.08.2017

  • Основы линейной, векторной алгебры, аналитической геометрии и математического анализа. Криволинейные и поверхностные интегралы, дифференциальные уравнения, элементы теории поля и теории функций комплексного переменного, основы операционного исчисления.

    курс лекций, добавлен 19.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.