Интегрирование линейных неоднородных дифференциальных уравнений второго порядка с постоянными коэффициентами
Интегрирование однородного линейного уравнения второго порядка с постоянными коэффициентами методом Эйлера. Система линейно независимых решений и определитель Вронского. Применение явления резонанса. Способы гашения нежелательных вынужденных колебаний.
Подобные документы
Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Определение точки равновесия (нулевого решения) однородной системы линейных уравнений. Расчет поведения фазовых кривых линейной автономной системы на плоскости.
контрольная работа, добавлен 29.11.2015Дифференциальные уравнения и геометрическая интерпретация решения. Особенность системы линейных дифференциальных уравнений с постоянными коэффициентами. Возведение в степень и извлечение корня, понятие об интеграле функции комплексного переменного.
контрольная работа, добавлен 22.11.2014Асимптотические представления некоторых типов решений одного класса нелинейных неавтономных дифференциальных уравнений второго порядка и достаточные условия существования таких решений. Медленно меняющаяся функция. Применение правила Лопиталя.
статья, добавлен 27.06.2016Рассмотрение условий и конкретных типов задач, при которых знание собственных значений характеристического полинома при решении линейных дифференциальных уравнений не является обязательным. Периодическая переходная функция при периодическом воздействии.
статья, добавлен 21.09.2016Общие сведения о системах дифференциальных уравнений. Критерий линейной независимости, определитель Вронского. Метод сведения к одному уравнению более высокого порядка. Решение видоизмененным методом Эйлера и способом неопределенных коэффициентов.
реферат, добавлен 27.12.2013Разработка метода исследования дифференциальных уравнений с-образными коэффициентами с помощью аппроксимирующих семейств операторов, являющихся возмущениями исходного оператора. Применение теории к исследованию уравнений с-образными коэффициентами.
автореферат, добавлен 18.08.2018Уравнения первого порядка с разделяющимися переменными. Решение линейных уравнений первого порядка при помощи подстановки Бернулли. Линейные однородные дифференциальные уравнения. Алгоритм решения дифференциальных уравнений второго и третьего порядков.
методичка, добавлен 27.04.2016Понятие дифференциального уравнения. Определение функций производного порядка. Линейные дифференциальные уравнения с постоянными коэффициентами. Решение системы по методу Эйлера. Геометрическая интерпретация комплексных чисел и условия Коши-Римана.
лекция, добавлен 22.07.2015Рассмотрение вопроса численного интегрирования дифференциального уравнения Ферхюльста второго порядка с заданными начальными условиями. Сравнение приближенных вычислений данных с точным решением уравнения при расчетах в программе MathCAD рядом Тейлора.
статья, добавлен 30.09.2020Способ доказательства существования и единственности решения краевой задачи для уравнения третьего порядка с кратными характеристиками методом интегралов энергии и методом эквивалентной редукции к интегральному уравнению Фредгольма второго рода.
статья, добавлен 30.09.2012Канонические и параметрические уравнения кривых второго порядка, таких как эллипс, гипербола и парабола, их основные свойства. Приведение уравнения кривой второго порядка к каноническому виду. Уравнения кривых второго порядка в полярных координатах.
методичка, добавлен 06.02.2013Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.
курс лекций, добавлен 23.10.2013Элементы теории матриц. Системы линейных уравнений. Элементы векторной алгебры. Прямая на плоскости. Определители третьего порядка. Кривые второго порядка. Плоскость и прямая в пространстве. Поверхности второго порядка. Понятие комплексных чисел.
лекция, добавлен 23.08.2016- 39. Нелинейная свободная система второго порядка, описываемая обыкновенным дифференциальным уравнением
Представление исходной нелинейной свободной системы второго порядка в виде системы дифференциальных уравнений первого порядка и ее линеаризация. Изучение асимптотической устойчивости состояния равновесия системы в соответствии с первым методом Ляпунова.
курсовая работа, добавлен 22.05.2012 Дифференциальные уравнения I порядка. Уравнения с разделяющимися переменными. Однородные и линейные уравнения. Теорема существования и единственности решения дифференциального уравнения. Линейное однородное уравнение с постоянными коэффициентами.
курсовая работа, добавлен 04.03.2017Обыкновенные дифференциальные уравнения (ОДУ) первого порядка, разрешенные относительно производной. Интегрирование ОДУ первого порядка. Доказательство теоремы Коши-Пикара о существовании и единственности решения задачи Коши для ОДУ первого порядка.
курсовая работа, добавлен 13.11.2013Определители второго порядка, их особенности. Примеры решения систем двух уравнений с двумя неизвестными методом определителей. Решение систем из трех линейных уравнений с тремя неизвестными методом определителей. Основные свойства определителей.
реферат, добавлен 23.11.2011Понятие и структура матрицы второго порядка, принципы и порядок ее формирования, отличительные черты от матрицы третьего порядка. Сущность и характерные свойства определителей. Методика вычисления определителя i-го порядка. Применение метода Крамера.
лекция, добавлен 12.03.2013Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010Определение обыкновенного дифференциального уравнения. Приемы решения уравнений с разделёнными и разделяющимися переменными, задача Коша. Методы интегрирования Эйлера, Рунге-Кутта, Адамса. Геометрический смысл дифференциального уравнения первого порядка.
курсовая работа, добавлен 26.12.2012Решение дифференциального уравнения для вертикальных колебаний под действием вынуждающей силы. Сравнение функции ode45 и метода Рунге-Кутты 4 порядка. Оценка точности результата решения данного уравнения методом Эйлера и методом Рунге-Кутты 4 порядка.
лабораторная работа, добавлен 10.10.2015Построение приближений решения линейных дифференциальных уравнений с переменными коэффициентами. Приведение их к интегро-дифференциальным уравнениям Вольтерра при помощи интегральных преобразований Лапласа и основных теорем операционного исчисления.
статья, добавлен 26.07.2016Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.
доклад, добавлен 29.04.2021Формы, методы и средства интегрирования дифференциальных уравнений с помощью рядов. Использование признака Лейбница для исследования сходимости знакочередующихся рядов. Применение интегрирование при решении уравнений Эйри и Бесселя, Тейлора и Маклорена.
курсовая работа, добавлен 09.07.2015Рассмотрение видов линий второго порядка на плоскости. Характеристика общего уравнения касательных к линиям второго порядка. Составление уравнения касательной к эллипсу, гиперболе и параболе. Разработка программы для написания уравнения касательной.
курсовая работа, добавлен 29.10.2016