Применение операционного исчисления при решении дифференциальных уравнений
Основатели символического (операционного) исчисления. Оригиналы и изображения функций по Лапласу. Основные теоремы операционного исчисления. Дифференцирование изображения. Интегрирование оригинала и изображения. Отыскание оригинала по изображению.
Подобные документы
Определение третьего порядка по правилу разложения по элементам первой строки. Использование формулы сокращенного умножения для знаменателя. Исследование функций методом дифференцированного исчисления. Решение дифференциального уравнения первого порядка.
методичка, добавлен 18.03.2015Примеры решения математических заданий на нахождение матрицы, производной методом дифференциального исчисления, вычисление определителя четвертого порядка, системы линейных алгебраических уравнений методом Крамера и средствами матричного исчисления.
контрольная работа, добавлен 16.04.2014Определение уравнение переходного процесса по изображению регулируемого параметра по Лапласу. Нахождение корней методом приближения. Разложение изображения регулируемого параметра на сумму простых дробей. Задание на определение исследуемого уравнения.
методичка, добавлен 30.10.2010Единичная функция Хевисайда и импульсная функция Дирака. Характеристика свойств аналитичности преобразования Лапласа. Первая и вторая теоремы разложения. Обратное преобразование Лапласа. Примеры восстановления непрерывной функции-оригинала по изображению.
презентация, добавлен 23.09.2017Решение краевых задач уравнений математической физики и задачи о разыскивании собственных значений и собственных функций для обыкновенных дифференциальных уравнений. Задача Штурма-Лиувилля о нахождении отличных от нуля решений дифференциальных уравнений.
курсовая работа, добавлен 26.02.2020Введение понятия урчуктных (разрывных) функций в дифференциальное исчисление. Нули разрывной функции. Совокупность разрывных функций. Касательные с угловыми коэффициентами. Классическая теорема Ролля. Расчет производной по классической теореме Ферма.
статья, добавлен 20.05.2018Аппроксимации функций, численное дифференцирование и интегрирование. Оценка погрешности квадратурных формул Ньютона-Котеса. Поиск минимума, случай одной переменной. Метод золотого сечения. Интерполяционный многочлен Ньютона для равноотстоящих узлов.
курс лекций, добавлен 03.07.2013Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.
курсовая работа, добавлен 05.06.2014Интегральное и дифференциальное исчисления функций одной переменной. Числовые множества. Предел и непрерывность функций. Производная и дифференциал. Кривизна и кручение кривой. Интегрирование рациональных дробей. Критерий Коши собственного интеграла.
учебное пособие, добавлен 31.03.2016Комплексная форма интеграла Фурье. Оригинал и изображение в преобразовании Лапласа. Доказывание теоремы дифференцирования оригинала методом математической индукции. Применение элементарных методов при разложении правильной дроби на сумму простейших.
курсовая работа, добавлен 25.03.2014Системы линейных уравнений и методы их решения. Определение наибольшего и наименьшего собственных значений итерационным методом. Аппроксимация и интерполяция функций. Численное дифференцирование и интегрирование. Отделение корней нелинейного уравнения.
курс лекций, добавлен 09.04.2013Основные разделы исчисления высказываний: понятие выводимости, естественного вывода, отношения эквивалентности. Использование аксиоматического метода в построении математических теорий. Полное изложение исчисления высказываний. Понятие выводимости.
методичка, добавлен 31.05.2012Нахождение производной или дифференциала функции как основная задача дифференциального исчисления. Свойства неопределенного интеграла. Процесс интегрирования иррациональных выражений, замена переменной интегрирования по частям в определенном интеграле.
контрольная работа, добавлен 11.05.2012Основные теоремы интегрального исчисления. Задача на нахождение площади криволинейной трапеции. Определенный интеграл как предел интегральной суммы. Рассмотрение основной теоремы Ньютона-Лейбница. Свойства интеграла с переменным верхним пределом.
лекция, добавлен 17.01.2014Прямое и обратное преобразование Лапласа. Теорема об изображении периодических оригиналов и о дифференцировании оригиналов. Поиск изображения функции, заданной формулой и графически. Примеры решения дифференциальных уравнений операционным методом.
реферат, добавлен 22.10.2015Характеристика и обоснование преимуществ метода численного интегрирования обыкновенных дифференциальных уравнений, разработанного Эверхартом. Исследование алгоритма и основной идеи построения метода Эверхарта на примере решения уравнений разных видов.
статья, добавлен 03.03.2018Интегрирование однородного линейного уравнения второго порядка с постоянными коэффициентами методом Эйлера. Система линейно независимых решений и определитель Вронского. Применение явления резонанса. Способы гашения нежелательных вынужденных колебаний.
дипломная работа, добавлен 27.02.2020История возникновения графов, изучение их определения и свойств. Исследование роли графов в жизни. Применение теории графов при решении математических задач и их использование для изображения железных дорог и систем улиц города на географических картах.
презентация, добавлен 15.10.2016Понятие независимых событий и условных вероятностей, их примеры. Характеристика основных свойств независимых событий. Независимость в совокупности. Теорема сложения и умножения для n событий. Формула полной вероятности и доказательство теоремы Байеса.
презентация, добавлен 21.09.2017Определение абсолютной и относительной ошибки при помощи метода дифференциалов. Расчет линейной аппроксимации, применение метода интегралов для вычисления площади, работы силы. Практика решения характеристических уравнений. Общее решение ЛОДУ, ЛНДУ.
контрольная работа, добавлен 11.04.2009Дифференциальное и интегральное исчисления. Основные типы матриц. Миноры и алгебраические дополнения. Союзная и обратная матрицы. Правило Крамера для решения линейных уравнений. Билинейная и квадратичная форма. Собственные числа и линейное пространство.
реферат, добавлен 02.06.2021Характеристика определителя Вронского: определение, общая теория, свойства, примеры применения. Интегрирование неоднородных систем дифференциальных уравнений методом вариации произвольных постоянных: определения, общая теория метода, решение примеров.
курсовая работа, добавлен 22.04.2011Предположение группы событий, объединение которых образует пространство элементарных исходов. Использование диаграммы Венна для теоремы сложения вероятностей и умножения. Применение формулы Байеса для условного исчисления априорной реализации гипотезы.
реферат, добавлен 26.06.2013Основы реляционной алгебры, её операции и замкнутость. Реляционные операторы и специальные реляционные операции. Выражение реляционного исчисления кортежей и реляционные исчисления с переменными на доменах. Элементы синтаксиса QUEL и языка предикатов.
реферат, добавлен 25.12.2015Краевая задача для уравнения эллиптического типа. Вариационные постановки основных эллиптических задач. Прямые методы вариационного исчисления. Неединственность решения дифференциальных уравнений. Граничное условие первого, второго и третьего рода.
курсовая работа, добавлен 08.10.2013